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The requirements for fault-tolerant quantum error correction can be simplified by leveraging
structure in the noise of the underlying hardware. In this work, we identify a new type of structured
noise motivated by neutral atom qubits, biased erasure errors, which arises when qubit errors are
dominated by detectable leakage from only one of the computational states of the qubit. We study
the performance of this model using gate-level simulations of the XZZX surface code. Using the
predicted erasure fraction and bias of metastable 171Yb qubits, we find a threshold of 8.2%, which
is 1.9 times higher than the threshold for unbiased erasures, and 7.5 times higher than the threshold
for depolarizing errors. Surprisingly, the improved threshold is achieved without bias-preserving
controlled-not gates, and instead results from the lower noise entropy in this model. We also
introduce an XZZX cluster state construction for measurement-based error correction, hybrid-fusion,
that is optimized for this noise model. By combining fusion operations and deterministic entangling
gates, this construction preserves the intrinsic symmetry of the XZZX code, leading to a higher
threshold of 10.3% and enabling the use of rectangular codes with fewer qubits.

Quantum error correction (QEC) is essential to pro-
tect fragile quantum states during computation [1–3].
To achieve scalable quantum computation, the rate at
which errors are introduced must be below a threshold
error rate that depends on the noise model and error cor-
rection approach [4–7]. Recently, significant work has
focused on identifying or engineering the structure of
noise in qubits, which can lead to higher thresholds and
reduced overhead if paired with appropriate gate opera-
tions and QEC architectures. For example, biased Pauli
noise models can be engineered in superconducting cat
qubits [8–10] and certain neutral atom qubits [11]. Given
the availability of bias-preserving gates [12], this can lead
to significantly improved thresholds and lower overhead
for the XZZX surface code, which has special symme-
tries facilitating decoding this type of noise [13, 14]. An-
other example is qubits where errors can be converted
with high probability into erasure errors. This model has
been proposed for appropriately engineered qubit encod-
ings and gates in neutral atoms [15], trapped ions [16]
and superconducting qubits [17, 18], and leads to signif-
icantly increased thresholds [15–17, 19–21]

In this work, we identify a new error model, biased
erasure errors, that arises when noise is dominated by
erasures from only one computational state of the qubit.
This model is physically motivated by metastable 171Yb
qubits, where erasures result from leakage out of the
|1〉 computational state into levels whose population can
be continuously monitored using cycling transitions that
do not affect the qubit levels [15, 22]. We refer to this
as a (Z-)biased erasure model, as detecting transitions
outside the computational states reveals that the qubit
was previously in |1〉, and can be represented as a Z
error with 50% probability. The biased erasure model
has more structure than the conventional erasure model,

∗ These authors contributed equally to this work.

where observing an erasure yields no information about
the prior state of the qubit [15–17, 19–21, 23].

In this work, we study the performance of the bi-
ased erasure model in several contexts. We first con-
sider the XZZX surface code with circuit-based syn-
drome extraction. We find a threshold of 8.2% when
biased erasures comprise Re = 0.98 of all gate errors,
as predicted for 171Yb under optimal conditions [15].
This is nearly double the threshold of 4.3% for a con-
ventional erasure model, and approximately 8 times the
threshold in a comparable depolarizing error model. Re-
markably, this high threshold is obtained using only
the native gate set of neutral atom qubits: single-qubit
gates and controlled-Z (CZ) gates, but without bias-
preserving controlled-not (CX) gates. We attribute the
higher threshold to a lower noise entropy when erasures
are biased compared to when they are not.

We also introduce a measurement-based QEC archi-
tecture, hybrid-fusion, that is specifically tailored for
neutral atom qubits with biased erasure noise. This
approach combines fusion operations with determinis-
tic entangling gates to construct an XZZX cluster state
that preserves the symmetry of the XZZX code under
this biased noise, without requiring bias-preserving CX
gates. In fusion-based (FB) error correction, an error
correcting code is built by fusing together few-body en-
tangled resource states using measurements of two-qubit
Pauli operators X ⊗ X and Z ⊗ Z. This method has
been studied in linear optical quantum computing, where
non-deterministic heralded fusions are the native entan-
gling operation [24–28], and has the benefit of preserv-
ing the symmetry of the XZZX code when the fusion
errors are biased [28]. We present a bias-preserving fu-
sion circuit for neutral atom qubits, and combine this
operation with deterministic entangling gates to develop
a measurement-based error correction architecture with
a high threshold, and reduced overhead and gate count.
With this approach, we find an even higher threshold of
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Preserves 2D Avoids atom
Model Re = 0 Re = 0.98 Re = 1 symmetry? replacement?

circuit, unbiased erasures 1.1% 4.3% 5.0% N N
circuit, biased erasures, native gates 1.1% 8.2% 10.3% N N
circuit, biased erasures, BCX 1.1% 9.0% 12.8% Y N
hybrid-fusion, native gates 1.0% 10.3% 14.7%† Y Y

TABLE I. Summary of thresholds derived in this work for the XZZX surface code under various error models and QEC
architectures. Thresholds are obtained using an MWPM decoder, and are reported for several values of Re. The first three
rows give thresholds using circuit-based syndrome extraction (Sec. II), for unbiased erasures [15], and using the biased erasure
model of Section I. The latter model is studied with and without bias-preserving CX gates, while the former case uses only
the native gates (single-qubit gates and CZs) of the neutral atom platform. The last line is the hybrid-fusion error correction
scheme introduced in Section III, with native gates. The final two columns indicate additional properties discussed in detail in
Section IV: whether the dominant errors produce pairs of syndromes lying in 2D planes of the decoding graph (reducing qubit
overhead in the limit of large bias), and whether mid-circuit atom replacement is necessary to recover from erasure errors.
†This numerically simulated threshold increases to 17.7% when using an erasure decoder at large system sizes (see text).

10.3% for Re = 0.98. We also discuss other potential
advantages of this approach for neutral atoms including
robustness against atom loss and relaxed requirements
for erasure detection and atom replacement.

While this noise model is physically motivated by
metastable 171Yb qubits, it may also be engineered
in other qubits with prevalent erasure errors such as
metastable trapped-ion qubits [16] or superconducting
qubits encoded in the |g〉 , |f〉 levels of transmons [17].
The high thresholds and reduced requirements for bias-
preserving gate operations may encourage the develop-
ment of new qubits or encodings. Finally, this work may
stimulate further development of fusion-based QEC ar-
chitectures for neutral atoms.

The main results of our work are summarized in Ta-
ble I. We introduce the biased erasure error model in sec-
tion I, and study its behavior using circuit-based error
correction in section II. In section III, we introduce the
hybrid-fusion architecture and study its performance.
We discuss further opportunities for optimization in sec-
tion IV, and conclude in section V.

I. BIASED ERASURE ERRORS IN NEUTRAL
ATOMS

To motivate the biased erasure model, we consider
how it arises naturally in neutral atom qubits. In this
platform, two-qubit gates implemented using the Ryd-
berg blockade are the dominant source of errors [29–
32]. The only fundamental effect limiting the fidelity
of two-qubit gates is the finite lifetime of the Rydberg
state that is populated transiently during the gate [33].
In the particular case of 171Yb [31, 34], encoding the
qubit in the nuclear spin sublevels of the metastable 3P0

scheme has the property that the majority of the de-
cay events populate disjoint subspaces that can be de-
tected efficiently, which converts these errors into era-
sure errors [15, 22]. Recent additional work has derived
gate protocols to convert other errors such as quasi-static

laser noise and Doppler shifts into erasure errors through
a similar mechanism [35, 36].

In this work, we consider an additional property of the
physical error model of metastable 171Yb qubits, which
is that excitation to the Rydberg state |r〉 only occurs
from the qubit state |1〉, and never from |0〉 [Fig. 1(a)]
[11]. To illustrate the behavior of this model, consider a
hypothetical single qubit operation involving excitation
from |1〉 to |r〉, where the only possible error is a decay
from |r〉 to a detectable, disjoint state |e〉. In the absence
of an error, the qubit is coherently de-excited back to |1〉
at the end of the gate. This results in a quantum channel
with Kraus operators:

K0 = |0〉 〈0|+
√

1− 2pe |1〉 〈1|+ |e〉 〈e| (1)

Ke =
√

2pe |e〉 〈1| (2)

The probability of an error, averaged over both compu-
tational states, is pe.

Upon detection of an atom in |e〉, the qubit is re-
initialized into |1〉, or replaced by a new qubit in |1〉,
described by the recovery operator R̂ = |1〉 〈e|. The
combined channel can be expressed by the Kraus opera-
tors:

W0 = |0〉 〈0|+
√

1− 2pe |1〉 〈1| (3)

We = R̂Ke =
√

2pe |1〉 〈1| (4)

We obtain an effective Pauli channel using the iden-
tity |1〉 〈1| = (I + Z)/2 and the Pauli twirl approxima-
tion (PTA), which may be achieved in practice by insert-
ing random single-qubit Pauli gates after atom replace-
ment [37–39]. The portion of the channel describing the
erasure error is:

WeρW
†
e =

pe
2

(IρI + ZρZ) (5)

Since the resulting state has at most a Z error, we refer
to this as a biased erasure error model.

To model a two-qubit CZ gate, we incorporate two ad-
ditional considerations. First, the leakage of one atom
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Figure 1. (a) Biased erasures arise when erasures (leakage to a detectable state |e〉) occur from only one qubit state, |1〉,
such that recovery by replacement or reinitialization in the same state results in at most a Z error. (b) Threshold error rates
as a function of Re, under different error models: unbiased erasures (blue), biased erasures with native gates (orange) and
biased erasures with bias-preserving CX (BCX) gates (green). The stars denotes Re = 0.98. (c) Illustrative circuit measuring
the two-qubit stabilizer ZX using native gates. When an erasure is detected during a two-qubit gate (purple star, depicting
fluorescence detection of an atom in |e〉), the affected atom is replaced in |1〉 and the resulting state is described by an error
drawn from {I, Z}⊗2, but the manner in which this error propagates depends on its space-time location in the circuit. If the
error occurs during the Z measurement (top), it propagates to the end of the circuit as a Z error. If the error occurs during
the X measurement (bottom), it propagates to the end of the circuit as an X error. Knowledge of the error location makes
this information available to the decoder, lowering the entropy of the noise.

can result in a dephasing error on the other atom as
well [40]. Therefore, a two-qubit gate with an average
erasure probability pe is modeled by drawing an opera-
tor from the set {I, Z}⊗2 with uniform probability pe/4.
Second, there is also a finite rate of non-erasure errors
such as decays from |r〉 back to the qubit subspace. We
model these as depolarizing errors with total rate pp by
drawing an operator from the set {I,X, Y, Z}⊗2\{I⊗ I}
with uniform probability pp/15. The relative proba-
bility of these errors is given by the branching ratio
R = pe/(pe + pp), which depends on the underlying
physics of the qubit. For metastable 171Yb, we have
predicted R = 0.98 [15].

In this work, we only consider errors during two-qubit
gates, which are by far the dominant errors for neu-
tral atoms. A discussion of the role of measurement,
single-qubit gate and idling errors on the unbiased era-
sure model can be found in Ref. [15].

Lastly, we note that the no-jump error also contributes
a Z-biased Pauli error with probability Ap2e, because of
the asymmetry in the erasure probability from the two
qubit states [11, 15]. Continuing the previous example
of a single-qubit gate, the evolution under the Kraus
operator from Eq. (3) is:

W0ρW
†
0 ≈

(
1− pe −

p2e
4

)
IρI +

p2e
4
ZρZ (6)

Here, we have applied the PTA and taken the limit pe �
1.

We find A = 1/4 in Eq. (6), but for the two-qubit
gate we estimate A ≈ 1/12 [40]. We incorporate this by
increasing the Pauli error probability to p′p = pp + Ap2e.
In the resulting model, erasures constitute a fraction Re

of all errors, with Re given by:

Re =
pe

p′p + pe
=

R

1 +AR2(pp + pe)
(7)

To present a more generalizable model of biased era-
sures, we consider the error model to be defined by the
independent parameters Re and p = p′p + pe. Far be-

low the threshold (p � 1), the behavior of 171Yb can
be estimated by setting Re = R = 0.98. However, the
performance near the threshold will be slightly different,
since Re < R. We note that Re = 1 is not physically
attainable for any value of R, but may be achievable in
other physical models of biased erasure that act symmet-
rically on the qubit states.

II. CIRCUIT-BASED QEC WITH BIASED
ERASURES

We quantify the advantage of the biased erasure model
using circuit-level simulations of the XZZX code. The
simulations use square codes with distance d ≤ 13, im-
plemented as d rounds of noisy stabilizer measurements
followed by a final, noiseless stabilizer measurement [40].
The error syndromes are decoded using a minimum-
weight perfect matching (MWPM) decoder, adjusting
edge weights in each shot to incorporate the location of
the erasure errors. The stabilizer simulations and con-
struction of the decoding graph are implemented with
Stim [41], while the decoding is implemented with Py-
Matching [42]. Except where noted, the simulations do
not consider bias-preserving CX gates. Therefore, CX
gates are implemented using CZ gates, conjugated by
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Hadamard (H) gates, which convert Z errors on the tar-
get qubit into X errors.

In Fig. 1(b), we show the threshold error rate pth as
a function of Re. For comparison, we show three cases:
unbiased erasures, biased erasures using only the native
gates of the Rydberg platform, and biased erasures in-
corporating hypothetical bias-preserving CX gates.

For large values of Re, biased erasures result in signifi-
cantly higher thresholds than unbiased erasures, even in
the absence of bias preserving gates. For example, at the
value Re = 0.98 projected for metastable 171Yb qubits,
the threshold is 8.2%, nearly twice the value with unbi-
ased erasures (pth = 4.3%) and nearly eight times the
threshold with depolarizing noise (Re = 0, pth = 1.1%).
The latter two thresholds are slightly higher than those
reported in Ref. [15], because we use the slightly more
accurate MWPM decoder, instead of a weighted Union
Find decoder.

Previous works using the XZZX surface code to cor-
rect biased Pauli noise leverage its particular symmetry
which guarantees that the pairs of error syndromes cre-
ated by Z errors on the data and ancilla qubits lie in dis-
connected 2D planes [13, 14]. This advantage vanishes
in the absence of bias-preserving gates (see, for instance,
Ref. [8]). The fact that we observe high thresholds with
only the native gates, and relatively little additional im-
provement from incorporating bias-preserving CX gates
for Re < 1 [Fig. 1(b)], suggests that another mechanism
is responsible. This is reinforced by a separate calcu-
lation showing that the CSS and XZZX surface codes
give almost the same threshold for biased erasures with
native gates at Re = 0.98.

We propose two alternate mechanisms for the high
threshold with native gates. First, the biased erasure
model has a lower error probability than the unbiased
erasure model: given that an erasure has occurred, the
biased model has an error with probability 3/4, while for
the unbiased model, there is an error with probability
15/16. Second, even though Z errors can be converted
into X errors in the absence of bias-preserving gates,
erasure conversion after every gate allows this evolution
to be tracked, lowering the entropy of noise [Fig. 1(c)]
and reducing the impact of bias-preserving gates on the
threshold.

Along with high thresholds, previous works on biased
Pauli errors have also demonstrated reduced qubit over-
head by using a thin rectangular XZZX code with the
smaller distance for the low-rate error [8, 13]. For the
biased erasure model, without bias-preserving CX gates,
the dominant Z errors get converted to X errors. Thus,
rectangular codes are not possible in the circuit-based
approach. We will see in the next section that this can
be overcome using a fusion-based approach to error cor-
rection.

For estimating the performance of biased erasure mod-
els in other qubit platforms that may have varying de-
grees of bias, and for including potential bias-degrading
effects in 171Yb, we have parameterized a finite bias ver-
sion and computed thresholds as a function of bias in

the supplementary information [40]. As in the case of
biased Pauli noise [8, 13], we find that the rate of era-
sures from the low-probability state (here, |0〉) must be
∼ 100 times less than the high-probability state to take
full advantage of the bias.

III. HYBRID-FUSION QEC

Measurement-based error correction (MBEC) is an al-
ternative approach to error correction based on perform-
ing local measurements on a many-body 3D entangled
state called a fault-tolerant cluster state [43–47]. In
the standard approach to realize a fault-tolerant clus-
ter state, called foliation, one dimension of the cluster
state effectively simulates time along which a planar en-
coded state is propagated via teleportation [48–51]. In-
deed, the commonly used Raussendorf-Harrington-Goyal
(RHG) or Raussendorf-Bravyi-Harrington cluster state
[48, 49, 52] teleports the standard CSS surface code.
Similarly, the recently introduced XZZX cluster state
teleports the XZZX surface code [53].

To teleport a state from one planar array of qubits
to the next, local destructive measurements are per-
formed on the first array of qubits and measurement out-
comes are recorded. After measurement, the first array
of qubits can be re-intialized and reused to receive the en-
coded state from the second array. In this way, the entire
3D cluster state, with an arbitrary extent in the time-like
direction, can be simulated by teleporting information
back-and-forth between two planar surface code states.
The measurement outcomes are subsequently processed
to reconstruct the stabilizers and correct errors.

Fusion-based error correction (FBEC) is a particular
approach for MBEC in which the cluster state is grown
by fusing together few-body entangled resource states.
Fusions are entangling operations carried out by per-
forming destructive two-qubit measurements of X ⊗ X
and Z ⊗ Z. FBEC has been widely studied for linear
optical quantum computing because fusions are the na-
tive entangling operations in that platform [24–28]. Re-
cently, a fusion-based construction of the XZZX code was
proposed that can maintain the symmetry of that code
under biased noise if the fusion errors are biased [28].

In this section, we introduce a hybrid-fusion construc-
tion of the XZZX cluster state designed for metastable
171Yb qubits with biased erasures that combines fusion
operations and deterministic entangling gates. First,
we design a bias-preserving fusion circuit that ensures
that biased erasures in the physical gates only affect
the X ⊗ X measurements, preserving Z ⊗ Z. Then,
we design a hybrid cluster state construction protocol
that uses both fusions and direct CZ gates to entan-
gle a collection of post-selected 8-qubit resource states
(hereafter, 8-rings). The operations and resource states
are designed to minimize the number of CZ gates while
ensuring that biased erasures at any step maintain the
two-dimensional symmetry of the XZZX code. This sim-
plifies the decoding problem, enabling higher thresholds
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Figure 2. (a) A unit cell of the XZZX cluster state, with two examples of stabilizers centered on X ( )- and Z (©)- type
qubits as described in the main text. (b) The cell stabilizer obtained by multiplying the stabilizers centered at all faces of a
unit cell. (c) The 8-ring resource states used to build the cluster state. (d) Circuit to generate the resource state with 171Yb
atoms. The state is postselected on the absence of detected erasure errors. We have drawn only a single erasure detection step
at the end of the circuit to reflect that the precise space-time location of the errors is not needed. In practice, a fluorescence
detection is performed after every gate. (e) Circuit for adaptive, bias-preserving fusion measurements with 171Yb atoms.
Erasure detection (via fluorescence, purple lines) is performed following each gate. If any erasures occur, the measurement
basis of the fusion qubits is changed from X to Z, ensuring that the value of Z ⊗ Z is preserved at the expense of X ⊗ X.
(f-h) Extended protocol for conceptual understanding of how the cluster state error correction is realized. For reference, in (h)
we highlight in green a planar array of qubits encoded in XZZX surface code that is being propagated in time (left to right),
generating the XZZX cluster state. Note that the entire cluster state shown does not need to be built at once, and can be
realized using a small number of such planar arrays of qubits which are reused over time (see [40]).

and lower overhead [14, 28], which we demonstrate using
circuit-level simulations.

A. The XZZX cluster state

The XZZX cluster state [53] is a stabilizer state de-
fined on a graph with an X-type or Z-type qubit at each
vertex, represented by  and© respectively in Fig. 2(a).
There is a stabilizer centered at each vertex. The sta-
bilizer centered at a X-type qubit is the product of the
Pauli X operator of that qubit, the Pauli Z operators
of all adjacent X-type qubits and the Pauli X operators
of all the adjacent Z-type qubits. The stabilizer cen-
tered at a Z-type qubit is the product of the Pauli Z

operator of that qubit and the Pauli Z operators of all
adjacent X-type qubits. There is no edge between two
Z-type qubits in the states considered here. Multiplying
the stabilizers centered on the faces of a unit cell gives
the six-body cell stabilizer, which is a product of Pauli
X operators on the X-type qubits and Pauli Z operators
on the Z-type qubits on the faces of the cell, as shown in
Fig. 2(b). Measuring all Z-type qubits in the Z basis and
all X-type qubits in the X basis teleports the XZZX sur-
face code through this cluster state. To simultaneously
perform error correction, the value of each cell stabilizer
is constructed by adding the measurements outcomes of
qubits around the faces of the unit cells.

In the XZZX cluster state, a Z error on an X-type
qubit or an X error on a Z-type qubit causes its neigh-
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boring cell stabilizers to flip [53]. Importantly, Z er-
rors on X-type qubits only cause pairs of defects, or
error syndromes, that are confined to lie in disconnected
2D layers, leading to more accurate decoding of errors
and higher thresholds [13, 14, 53]. This feature reflects
the symmetry that arises within the stabilizer group of
the XZZX code under Z errors. Thus, to effectively use
the XZZX cluster state to correct errors it is necessary
to ensure that the dominant physical noise during clus-
ter state preparation preserves this symmetry, that is, it
only introduces Z errors on X-type qubits. We realize
this goal using a combination of postselected resource
states, bias-preserving fusions and CZ gates.

B. The resource state

The 8-ring resource state is defined by the graph
in Fig. 2(c), and can be prepared using the circuit in
Fig. 2(d). This circuit involves 8 CZ gates between
neighboring X- and Z-type qubits on a ring. Biased era-
sures can result in unwanted X errors on Z-type qubits.
However, postselecting completed rings on the absence
of erasures allows these errors to be removed, while at
the same time increasing the overall fidelity of the re-
source state. Using the notation of Section I, in the
limit where Re ≈ 1 and pe � 1, the success probability
is 1−8pe and the error probability of successful resource
states is ≈ 8p′p. Many copies of this resource state can
be prepared in parallel, and the successful ones can be
moved into the positions for cluster state construction,
described next, using movable optical tweezers [29, 54].

C. Adaptive, bias-preserving fusion measurements

Figure 2(e) presents an adaptive fusion measurement
circuit with the property that biased erasures during
two-qubit gates only cause an erasure of the X ⊗ X
measurement outcome. In the ideal evolution without
errors, the ancilla qubit measures Zi⊗Zj using CZ gates,
followed by the single-qubit measurements Xi ⊗ Ij and
Ii ⊗Xj , from which Xi ⊗Xj can be computed [40].

In order to concentrate dominant errors into the
Xi ⊗Xj measurements and preserve the Zi ⊗ Zj infor-
mation, we check for erasure errors in the two CZ gates,
as shown in Fig. 2(e), and adapt the subsequent opera-
tions based on the location of these errors. In particular,
when an erasure is detected, the protocol is aborted and
each fusion qubit is measured independently in the Z
basis with the measurement outcomes mi (= 0 or 1) and
mj (= 0 or 1). The overall evolution is as if the atoms
i, j were fused, with the Zi ⊗ Zj measurement outcome
= mi ⊕ mj , but the Xi ⊗ Xj measurement outcome is
erased. We note that the Z measurement only needs
to be performed on the fusion qubit that is not erased,
because observing the erasure is equivalent to measur-
ing the erased atom in |1〉. Therefore, the erased qubits
also do not need to be replaced, unlike the approach in

Section II and Ref. [15].

D. Constructing the XZZX cluster state

Conceptually, the hybrid-fusion cluster state construc-
tion can be understood from the following steps. In step
1 of the protocol, copies of postselected 8-ring resource
states [Fig. 2(c)] are arranged in a plane as shown in
Fig. 2(f). In step 2, an X⊗X measurement is performed
on pairs of Z-type qubits at the neighboring corners.
This measurement joins the pair of measured qubits into
a single effective Z-type qubit with logical Z operator
Z̄ = Z ⊗ Z, giving a single 2D layer of the XZZX clus-
ter state shown in Fig. 2(g) [26, 28]. To ensure that the
post-measurement state is the stabilizer state defined by
the graph in Fig. 2(g), a Pauli Z correction is applied to
the two X-type qubits adjacent to one of the measured
Z-type qubits conditional on the outcome of the X ⊗X
measurement [28]. In practice, this correction is tracked
in software.

In step 3, copies of such 2D lattices are stacked on
top of each other in a staggered manner such that the
X-type qubits in one layer align with those in the next,
while the Z-type qubits in one layer lie on top of a face in
the next layer [Fig. 2(h)]. In step 4, a CZ gate is applied
between each X-type qubit in layer k and another X-
type qubit at the same location in layer k + 1 as shown
in Fig. 2(h). This gives the entire 3D XZZX cluster state.
Importantly, the CZ gates commute with each other and
may be applied in any order. Here we follow a specific
order: for each X-type qubit connected to unit cells to
its left and right, the CZ gate with the X-type qubit in
the layer above it is performed before the CZ gate with
the layer below. If an erasure is detected in the first CZ
gate, the second CZ gate is omitted to avoid introducing
additional errors.

Now that we have the cluster state, we measure each
qubit to teleport the XZZX surface code through the
cluster state and to reconstruct the cell stabilizers of
Fig. 2(b) for error correction. This is divided into two
sub-steps. In step 5a, we measure each X-type qubit in
X basis. In step 5b, we measure each effective Z-type
qubits in the effective Z̄-basis, by measuring Z ⊗ Z on
the physical Z-type qubits composing the effective qubit.

We now observe that these operations can be re-
grouped to shorten the protocol. First, step 5b com-
mutes with steps 5a, 4, 3, and 2, and can therefore be
performed simultaneously with step 2. Steps 5b and 2 to-
gether constitute a fusion measurement, which removes
Z-type qubits from the cluster state entirely. This fu-
sion measurement is implemented using the circuit in
Fig. 2(e). Furthermore, the staggered layer stacking and
CZ gates in steps 3 and 4, respectively, can also be per-
formed concurrently with or before the fusion measure-
ments, as they act on a different subset of the qubits.
Thus, the sequence of operations in the shortened pro-
tocol, summarized in Fig. 3, begins by preparing several
copies of post-selected resource states and moving them
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Figure 3. Proposed shortened protocol for high-threshold
hybrid-fusion QEC with the XZZX cluster state using fusions
and CZ gates.

in position to form layers stacked in a staggered manner
(steps 1,3), which is followed by fusions (steps 2, 5b) and
CZ gates between layers (step 4), and finally measure-
ment of X qubits in the X basis (step 5a).

E. Maintaining the XZZX code symmetry

Our hybrid-fusion approach is carefully designed to
minimize the total number of CZ gates subject to the
constraint of maintaining the symmetry of the XZZX
code under biased erasures. To satisfy this constraint,
we require that biased erasures only lead to Z errors on
X-type qubits, but not to X errors on Z-type qubits.
There are three types of entangling operations deployed
in our approach: gates between X-type and Z-type
qubits in the resource state [Fig. 2(d)], fusion operations
[Fig. 2(e)], and gates between X-type qubits in adjacent
layers [Fig. 2(h)].

Biased erasures in the resource state generation
[Fig. 2(d)] do not maintain the system symmetry: Z er-
rors arising from biased erasures in the CZ gates are con-
verted into X errors on Z-type qubits by the Hadamard
(effectively, Fig. 2(d) implements a non-bias-preserving
CX between the Z-type and X-type qubits). However,
we remove these errors from the cluster state by post-

Figure 4. Threshold error rates for the hybrid-fusion architec-
ture as a function of erasure fraction, Re. The star denotes
Re = 98%, while the green square marks the percolation
threshold corresponding to the decoding graph for Re = 1
(see text).

selecting the resource states on the absence of erasures.
The resource state is chosen such that no additional en-
tangling gates between X- and Z-type qubits are needed
after the post-selection step.

The second operation, fusion, uses adaptive measure-
ments to maintain the error bias under biased erasures.
Recall that the bias-preserving fusion circuit in Fig. 2(e)
is designed to only erase the X ⊗ X measurement out-
come. Since this result is used to apply a Z Pauli correc-
tion on the two adjacent X-type qubits [Fig. 2(g)], this
results in a Z error on two X-type qubits in the cluster
state, maintaining the desired symmetry.

The final operation, CZ gates joining the cluster state
layers, has the desired behavior intrinsically: the CZ
gates act only on X-type qubits, so the resulting biased
erasures maintain the system symmetry.

The benefit of this approach can be understood by
comparison to alternative cluster state constructions.
Compared to directly entangling all the qubits in the
cluster state, our hybrid-fusion approach results in the
same number of biased erasure errors on the final clus-
ter state, but ensures that they obey the 2D symmetry.
However, the number of CZ gates, and thus the rough
Pauli error rate on the final cluster state, is increased by
a factor of 4/3. Therefore, our approach should outper-
form direct entanglement except when Re is very small
and Pauli errors are more important to correct than bi-
ased erasures. Compared to an all-fusion strategy like
the 6-ring construction of Ref. [28], our strategy also
has the same number of biased erasure errors on the fi-
nal cluster state, but uses 2/3 the number of CZ gates.
Therefore, our approach outperforms the all-fusion con-
struction except when Re & 0.99, where the higher per-
colation threshold of the decoding graph in the all-fusion
approach gives a slight advantage.
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F. Threshold results

We evaluate the performance of our hybrid-fusion ar-
chitecture under the biased erasure noise model by es-
timating the thresholds for different Re (Fig. 4). Our
simulations account for noise in the CZ gates used in the
resource state generation circuit, the fusion circuit, and
those of step 4, on a d× d× d cluster state, with d ≤ 13,
which is equivalent to teleporting a d × d planar XZZX
code while performing d rounds of stabilizer measure-
ments in the circuit-based approach. Error syndromes
are decoded using a MWPM decoder [55].

For Re = 1 we achieve a threshold of 14.7% which
is higher than that achieved with the circuit-based er-
ror correction. For Re = 0.98, we obtain a threshold of
10.3%, higher than that achieved with the circuit-based
approach with or without bias-preserving CX gates. In
the other extreme of Re = 0 when all source of noise is
depolarizing Pauli noise, we obtain a threshold of 1%,
similar to the threshold with circuit-based error correc-
tion at the same value of Re.

Note that at Re = 1, the threshold can also be deter-
mined from the bond-percolation threshold of the union-
jack lattice and is expected to be ∼ 17.7% [40]. The
observed threshold in Fig. 4 is smaller than this because
of finite size effects that are more prominent in the ex-
treme case of Re = 1 when the decoding graph is 2D. To
confirm, we use a fast erasure decoder [56] to simulate
extremely large lattices (d × d × 5 up to d = 61), and
recover the threshold predicted by percolation theory in
this limit. Since the erasure decoder and MWPM de-
coder achieve the same accuracy for erasure errors, we
believe that we should achieve the same thresholds for
both decoders at Re = 1, but simulating such large lat-
tices with MWPM is computationally prohibitive.

IV. DISCUSSION

We now make several comparisons between the pre-
sented circuit-based and hybrid-fusion approaches. Our
hybrid-fusion protocol can be viewed as implementing
QEC on a state encoded in a planar XZZX code as it
is being teleported to another planar array of qubits.
This is an alternative to using repeated rounds of quan-
tum nondemolition stabilizer measurements as in con-
ventional circuit-based error correction, but still allows
transversal one- and two-qubit logical gate operations
available for the planar surface code. In the supplemen-
tary material, we explicitly show how our hybrid-fusion
protocol can be implemented with just a few planar ar-
rays of qubits, starting and stopping with a 2D encoded
XZZX surface code [40]. We note that neutral atoms
are ideally suited to the high degree of connectivity re-
quired to implement hybrid-fusion: dynamic rearrange-
ment of qubits is already used to postselect filled tweezer
sites [57, 58], and coherent qubit transport has also been
demonstrated [29, 54].

The hybrid-fusion approach has other advantages be-

yond the higher threshold, which we outline here but do
not quantitatively analyze. As discussed, our construc-
tion preserves the system symmetry of the XZZX code
under biased noise by ensuring that the high-probability
Z erasures run along layers in Fig. 2(h). Thus, the
same logical error rate can be achieved with fewer lay-
ers when Re is large and the erasure are highly biased.
This amounts to using a thin, rectangular XZZX surface
code, which becomes a repetition code when Re = 1 and
the erasures are infinitely biased [13]. This allows for re-
duced overhead compared to the circuit-based approach,
which requires a square XZZX code in the absence of
bias-preserving gates. This property is summarized for
each QEC architecture in Table I.

Second, the teleportation process converts lost atoms
into Pauli errors, ensuring a finite threshold against loss
errors or undetected erasures without additional leak-
age reduction units [59–63]. We leave an analysis of the
threshold for a given loss rate to future work.

Finally, hybrid-fusion QEC relaxes the requirements
for erasure detection and subsequent atom replacement.
In the circuit-approach proposed in Ref. [15] and consid-
ered in Section II, the space-time location of each erasure
error in the circuit must be resolved, and the affected
qubits must be replaced or re-initialized as the compu-
tation proceeds. In the hybrid-fusion approach, this re-
quirement is relaxed, in a way that is slightly different for
the three steps involving two-qubit gates. For resource
state preparation (step 1 of the protocol in Sec. III D),
it is only necessary to determine if an erasure occurred
at some point during the 8-ring preparation, and if it
did, the entire state is discarded. Therefore, there is
no need to replace affected qubits, and the necessary
spatio-temporal resolution of the erasure detection is sig-
nificantly coarser. During the fusion operations (steps 2,
5b), erasures must be detected immediately as the mea-
surement basis is conditioned on this outcome, but the
affected atoms do not need to be replaced. Finally, in
the layer-joining CZ gates (step 4), atom replacement is
not necessary, as the atoms are immediately measured.
In summary, we find that conditionally replacing atoms
at precise space-time locations is never required (as in-
dicated in Table I), which may be a considerable exper-
imental simplification.

V. CONCLUSION

To summarize, we have introduced a new noise
model, biased erasure, that is physically motivated by
metastable 171Yb qubits but may also be engineered in
other qubit platforms. We have studied two realistic
QEC architectures under this noise model. The first is
a circuit-based approach, where the improvement with
the biased erasure model arises from the reduced en-
tropy of this noise model, enabling more effective de-
coding. We obtain a threshold of 8.2% for the pre-
dicted metastable 171Yb erasure fraction. The second
is a hybrid-fusion approach with a systematic code con-
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struction that gives rise to system symmetries under the
biased erasure model. In this approach, we obtain a
threshold of 10.3% for the metastable 171Yb noise model.
Compared to circuit-based syndrome extraction, this ap-
proach has the additional benefits of potentially enabling
rectangular surface codes with lower overhead (in the
limit of a large erasure fraction), robustness against atom
loss, and simplified requirements for detecting and han-
dling erasure errors in real-time.

There are several opportunities for further simplifi-
cation and optimization of the hybrid-fusion approach
for scalable fault-tolerant quantum computing. First,
the threshold for hybrid-fusion QEC may be further im-
proved by post-selecting on larger resource states [27].
This will decrease the rate of successfully generating the
resource states, but it is still an experimentally viable
route with deterministic, high-fidelity gates. For exam-
ple, given a gate with 99.9% CZ fidelity, resource state
chunks involving 100 CZ gates could be post-selected

with 90% success probability. Second, the hybrid-fusion
approach naturally allows conversion of the planar sur-
face code to a 3D surface code with transversal non-
Clifford gates [64], which may lead to significant over-
head reduction compared to alternative protocols for
non-Clifford gates that rely on magic-state distillation.
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S1. ERROR CHANNEL

A. Two-qubit gate

Following the description of the single-qubit gate error channel in Section I in the main text, here we consider the
more realistic two-qubit gate. Decay of one or both atoms to |e〉 can occur during the gate, which we approximate
by the channel with Kraus operators:

K0 = |00〉 〈00|+
√

1− p1 (|10〉 〈10|+ |01〉 〈01|) +
√

1− p2 |11〉 〈11|+ |e〉 〈e| ⊗ I + I ⊗ |e〉 〈e|+ |ee〉 〈ee| (S1a)

K1 =
√
p1 |e0〉 〈10| (S1b)

K2 =
√
p1 |0e〉 〈01| (S1c)

K3 =
√
p2/3 |e1〉 〈11| (S1d)

K4 =
√
p2/3 |1e〉 〈11| (S1e)

K5 =
√
p2/3 |ee〉 〈11| (S1f)

Here, p1 is the probability of decaying to |e〉 from the states |01〉 or |10〉, and p2 is the probability for any decay to
|e〉 from |11〉. For typical CZ gates, p1 ≈ p2 because the Rydberg blockade results in only one atom in |r〉 in either
case [15, 65]. The total erasure probability is defined by averaging over the computational states as pe = (2p1+p2)/4.

After detecting whether any atoms are in |e〉, we apply one of the following recovery operators:

R0 = I (S2a)

R1 = |1〉 〈e| ⊗ I (S2b)

R2 = I ⊗ |1〉 〈e| (S2c)

R3 = |11〉 〈ee| (S2d)

This results in a channel with Kraus operators:

W0 = R0K0 = |00〉 〈00|+
√

1− p1 (|10〉 〈10|+ |01〉 〈01|) +
√

1− p2 |11〉 〈11| (S3a)

W1 = R1K1 =
√
p1 |10〉 〈10| =

√
p1

4
(I + Z)⊗ (I − Z) (S3b)

W2 = R2K2 =
√
p1 |01〉 〈01| =

√
p1

4
(I − Z)⊗ (I + Z) (S3c)

W3 = R1K3 =
√
p2/3 |11〉 〈11| =

√
p2
3

1

4
(I + Z)⊗ (I + Z) (S3d)

W4 = R2K4 = W3 (S3e)

W5 = R3K5 = W3 (S3f)

∗ These authors contributed equally to this work.
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Figure S1. (a) A patch of the XZZX surface code studied in this work, with the data and ancilla qubits denoted by the
green open circles and black solid circles, respectively. The red arrows denote the sequence of the stabilizer measurement.
(b) Scaling of the logical error rate with the physical error rate for code distances up to d = 13 with Re = 0.98 in the
case of unbiased erasure (ηe = 1/2, dashed lines) and fully biased erasure (ηe = ∞, solid lines). The threshold error rate
increases from pth = 4.3% to 8.1%. (c) Threshold error rates under different erasure bias for several Re (from bottom to top,
Re = 0.5, 0.8, 0.9, 0.98, 0.99, 1). In all plots, the lines are a guide to the eye.

Applying the PTA as before yields the Pauli channel:

W0ρW
†
0 ≈ NIIρII +

p22
64

(IZρIZ + ZIρZI) +
(2p1 − p2)2

64
ZZρZZ (S4a)

W1ρW
†
1 = W2ρW

†
2 ≈

p1
16

(IIρII + IZρIZ + ZIρZI + ZZρZZ) (S4b)

W3ρW
†
3 = W4ρW

†
4 = W5ρW

†
5 ≈

p2/3

16
(IIρII + IZρIZ + ZIρZI + ZZρZZ) (S4c)

where N is a normalization factor. The resulting qubit state is the same in all of the channels corresponding to
an erasure detection (i ≥ 1). Therefore, we group them together and consider their sum:

∑
i≥1

WiρW
†
i =

pe
4

(IIρII + IZρIZ + ZIρZI + ZZρZZ) (S5)

which is the error model described in the main text.
The no-jump error when no erasure is detected is slightly more complicated than in the single qubit case presented

in Sec. I. The physical interpretation of this error is that the absence of a detected error reveals information about
the state, specifically, that it is less likely to be in a state from which it could have jumped to |e〉.

We note that the last coefficient in Eq. (S4a) would vanish when the two qubits jump independently (p2 = 2p1),
indicating no correlated errors up to the second order. If p2 < 2p1 (which is the case in practice, because of the
Rydberg blockade), then the extra weight of the ZZ term in Eq. (S4a) represents a correlated error, but we do not
consider this aspect further since these errors are already very small below threshold. Using the definition of pe and
Eq. (S4a) with p1 = p2, we arrive at the estimated no-jump Pauli error contribution of p2e/12 that is referenced in
Sec. I.

B. Erasures with finite bias

The analysis above describes infinitely biased erasures arising from the decay of the Rydberg state. However, other
mechanisms can also give rise to erasure errors that need to be considered separately.

First, Refs. [35, 36] derived gate protocols that convert Doppler shifts and slow amplitude noise into leakage into
the Rydberg state, which can be detected as an erasure error. Since only atoms in |1〉 are coupled into the Rydberg
state in these protocols, as well, the erasure errors should also be strongly biased.

Second, decays out of the qubit subspace 3P0 from Raman scattering from the dipole trap or the finite lifetime
of this state also become erasures [15]. However, these are equally likely to occur from either qubit state, and are
therefore better represented as unbiased erasures. Most likely, the same description applies to single-qubit rotations
driven by Raman transitions, as in Ref. [66].
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Finally, erasures in the CZ gates themselves are not infinitely biased if there is a finite probability to excite to
(and decay from) the Rydberg state from |0〉. While this is strongly suppressed in typical hyperfine qubits in alkali
atoms because of the large splitting associated with the ground state hyperfine coupling (≈ 6.8 GHz in Rb) [67], it is
a more significant effect in nuclear spin qubits in alkaline earth atoms because of the smaller splittings. In 171Yb, the
excitation probability of |0〉 is suppressed by the Zeeman splitting in the Rydberg state [31]. For the 3S1 state, the
average occupation of the Rydberg state during a gate when starting from |0〉 is approximately p0 = (~Ω)2/(gFµBB)2,
with gF = 4/3. For reasonable values of Ω ≈ 5 MHz, p0 can be suppressed below 10−3 in a magnetic field over 100
Gauss.

To incorporate these effects, we introduce the following phenomenological model. When an erasure error occurs
during a CZ gate (with probability pe), the state of each atom after recovery is modeled by selecting a Pauli operator
from {I, Z} with probability pI = pZ ≡ pa, or from {X,Y } with probability pX = pY ≡ pb, where 2(pa + pb) = 1.
Defining the erasure bias ηe = pa/2pb, we arrive at the thresholds summarized in Fig. S1(c). In the experimentally
relevant range of Re, we see significant improvement in the threshold already for ηe = 10, with saturation effects
visible above ηe = 100.

S2. CIRCUIT-BASED QEC

Here we describe in more detail the circuit-level simulation of the XZZX surface code. We use a square unrotated
XZZX lattice with a code distance d [see Fig. S1(a) for an example of d = 4]. In step 1, we initialize all qubits in
|+〉 and then do a round of noiseless stabilizer measurement to initialize the logical-qubit. In step 2, we implement
d rounds of noisy stabilizer measurement, considering only errors on two-qubit gates. We flip a coin after every
two-qubit gate to include an erasure with probability pe = pRe. If an erasure does not occur, a Pauli error is
introduced with probability pp = p(1 − Re). In step 3, we do a round of noiseless stabilizer measurement, which
can be considered as corresponding to readout of the logical-qubit state. The threshold is determined from the
intersection of the curves of the logical error rate versus physical error rate for two code distances d = 9, 13.

We study three different error models: (i) unbiased erasure, (ii) biased erasure with native gates, and (iii) biased
erasure with bias-preserving CX gates. In case (i), if an erasure occurs, errors are drawn uniformly at random from
{I,X, Y, Z}⊗2. In case (ii), for infinitely biased erasure, errors arising from erasures during CZ gates are drawn
uniformly at random from {I, Z}⊗2. Errors from CX gates are drawn from {I, Z} ⊗ {I,X}, since CX gates are
implemented using CZ gates conjugated by H gates on the target qubit.

Following the discussion in Sec. S1 B, when considering erasure with finite bias η, the error from a CZ gate is
simulated by letting the two qubits experience {I, Z,X, Y } with probabilities pI = pZ = η/(1 + 2η) and pX = pY =
0.5/(1 + 2η). In case (iii), for infinitely biased erasure, errors from both CZ and CX gates are drawn uniformly
at random from {I, Z}⊗2. In all cases, the remaining Pauli errors (not arising from erasures) are assumed to be
depolarizing, i.e., drawn uniformly at random from {I,X, Y, Z}⊗2\{I ⊗ I}.

We note that since all qubits start in |+〉 after the initialization in step 1, the logical qubit is in the (+1) eigenstate
of the logical X operator. Therefore, the derived logical error rate is effectively the logical Z error rate. One can also
start with all qubits in state |1〉 instead of |+〉 to get the logical X error rate, and evaluate separate thresholds for
logical Pauli-X and Pauli-Z errors (similar to Ref. [13]). In cases (i) and (ii), the two thresholds should be the same
since the probabilities of X and Z errors on individual data qubits are equal. This is consistent with our simulations.
In case (iii), since Z errors dominate X errors on all qubits, we evaluate the threshold using the logical Z error rate
(note that despite different error rates, the discrepancy between the two thresholds is small).

The probabilities in step 2 described above, following the model in [15], are used when deriving the threshold
corresponding to Re = 0.98 (predicted for 171Yb atom qubits) for comparison with the result in [15]. In other cases
of the circuit-based QEC studied in this work, we obtain the thresholds with a slightly modified version of error
introduction in step 2. When adding Pauli errors to a two-qubit gate that does not have an erasure, we change the
error probability from pp to pp/(1 − pe) to represent conditioning on the absence of an erasure. The corresponding
effect on the threshold is small as one can expect from 1 − pe ≈ 1. For instance, for Re = 0.98 listed in Table 1 in
the main text, in the case of infinite erasure bias with native gates, the threshold changes from 8.2% to 8.1% with
this adjustment. In the cases of unbiased erasure and infinite erasure bias with bias-preserving gates, the respective
thresholds have negligible changes.

S3. FUSION CIRCUIT

Here we provide a more detailed discussion of the fusion circuit introduced in the main text. Consider two qubits
(labelled i, j) which need to be fused and which may be entangled with other qubits (collectively labelled as R). We
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cam write the state of this system as

|ψ〉 = a |0〉i |0〉j |A〉R + b |1〉i |0〉j |B〉+ c |0〉i |1〉j |C〉R + d |1〉i |1〉j |D〉R (S6)

with, |a|2 + |b|2 + |c|2 + |d|2 = 1. After fusion, i, j are unentangled from the rest of the system and a new state of R
is created conditioned on the outcomes mXX and mZZ of the X ⊗X and Z ⊗ Z measurements respectively.

|ψ〉R,mXX=0,mZZ=0 ∝ a |A〉R + d |D〉R
|ψ〉R,mXX=1,mZZ=0 ∝ a |A〉R − d |D〉R
|ψ〉R,mXX=0,mZZ=1 ∝ b |B〉R + c |C〉R
|ψ〉R,mXX=1,mZZ=1 ∝ b |B〉R − c |C〉R

(S7)

For convenience we have dropped the normalization constants from the above equations. We now explain how this
transformation is achieved with the fusion circuit.

In the fusion circuit, a CZ gate is applied between each of the two fusion qubits and the ancilla. In the absence
of erasures, which we refer to as case 1, the ancilla is measured in the X basis, which projects the fusion qubits in
an eigenstate of Z ⊗ Z with eigenvalue given by the outcome of the ancilla measurement ma. Thus after the ancilla
measurement, the state |ψ〉 reduces to

|ψ〉mZZ=ma=0 ∝ a |0〉i |0〉j |A〉R + d |1〉i |1〉j |D〉R
|ψ〉mZZ=ma=1 ∝ b |1〉i |0〉j |B〉R + c |0〉i |1〉j |C〉R

(S8)

Next we measure X ⊗ I, I ⊗ X with measurement outcomes mi, mj respectively. After this the fusion qubits are
unentangled from R the state of which is |ψ〉R,mXX=mi⊕mj ,mZZ=ma

as desired. Thus in the absence of errors, the

circuit indeed performs the correct fusion operation.
Next we consider the situation when an erasure is detected. If only the ancilla is erased then each fusion qubit is

measured independently in the Z basis with the measurement outcomes m′i, m
′
j . This gives mZZ = m′i⊕m′j . In the

biased erasure model, the qubit can only be erased if it started from the |1〉 state. So if one of the fusion qubits is
erased then it is effectively measured in the Z basis with measurement outcome 1. Thus, if only one of the fusion
qubits is erased then we measure the other qubit in Z basis to obtain the outcome m, so that mZZ = m⊕ 1. If both
qubits are erased then we know that mZZ = 0.

S4. ERROR CORRECTION WITH PLANAR ARRAYS OF QUBITS

Figure S2(a) shows how a foliated repetition code can be implemented with just two linear chains of resource states.
The repetition code is teleported back-and-forth between the qubits marked in blue. We start with a repetition code
and bring in post-selected resource states. Next, we perform the fusions and single qubit X measurements on the
two arrays marked with grey and red boxes respectively. This effectively measures all the stabilizers of the repetition
code once and teleports the repetition code to the top blue row of qubits. This process can be repeated based on
the desired number of rounds of error correction. A more qubit-efficient procedure is shown in Fig. S2(b). Here, we
use only a single array of resource states at a given time, but the array needs to be reinitialized twice per-round of
stabilizer measurement.

Figure S3 shows how the XZZX surface code can be implemented with just four planar arrays of resource states.
The figure focuses on a single stabilizer plaquette for clarity. The code is teleported back-and-forth between the
qubits marked in red and black placed at the corners of the plaquette. We start with the XZZX code and bring
in post-selected resource states. Next, we perform the fusions and single qubit X measurements which effectively
measure all the stabilizers of the XZZX code once and teleports it to a new plane on the right. This process can be
repeated depending on the desired number of rounds of error correction. Just like for the repetition code, we can
reduce the number of layers to two and trade space for time.

S5. DECODING GRAPH FOR HYBRID-FUSION CONSTRUCTION AT Re = 1

Starting from 8-ring resource states, the cluster state is built using two primary operations: fusions within 2D
planes, and CZ gates between planes. Biased erasures form the dominant error channel for both operations. In the
following discussion we set Re = 1, and so Pauli errors are absent and error syndromes are restricted to distinct
two-dimensional planes.
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Figure S2. (a) Foliated repetition code implemented with just two linear chains of resource states. (b) Qubit-efficient
implementation of the foliated repetition code. Space is traded off for time/number of steps it takes to measure one round of
stabilizers.

Fusion failure on a Z-type qubit leads to a correlated Z⊗Z error on its two X-type neighbours in the resource state.
This correlated error creates (−1) stabilizer outcomes in unit cells diagonally displaced from one another within this
plane. An erasure during a CZ gate between two X-type qubits leads to a correlated Z error on both qubits. Since
these two qubits create pairs of syndromes in unconnected planes, we consider these two errors independently. The
resultant decoding graph is shown in Fig. S4, where the former resource states have been highlighted using dashed
lines.

This graph is commonly referred to as the union-jack lattice, and is the dual of the (4, 82) tiling of the plane. The
percolation threshold pth for this graph is naively 0.3232 [68], however, because errors from two gates contribute to
every edge in the decoding graph, we have 2pth − p2th = 0.3232, with the quadratic term appearing because we do
not perform the second CZ gate on erasure detection at the first gate in both fusions and inter-layer CZs on qubits.
Consequently, we obtain a theoretical threshold of pth = 17.7% in terms of the error rate per gate. We recover this
value by performing numerical simulations in the large-size limit.
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Figure S3. XZZX cluster state implemented with just two planar layers of resource states

Figure S4. (left) Possible error syndromes arising from biased erasures during CZ gates and fusions between Z type qubits for
a single plane of the XZZX cluster state. (right) The resultant syndrome graph used for decoding, highlighted in red, forms a
union-jack lattice.


