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Bosonic modes have wide applications in various quantum technologies, such as optical photons for
quantum communication, magnons in spin ensembles for quantum information storage and mechanical
modes for reversible microwave-to-optical quantum transduction. There is emerging interest in utilizing
bosonic modes for quantum information processing, with circuit quantum electrodynamics (circuit QED)
as one of the leading architectures. Quantum information can be encoded into subspaces of a bosonic
superconducting cavity mode with long coherence time. However, standard Gaussian operations (e.g.,

gg{:;ircdio des beam splitting and two-mode squeezing) are insufficient for universal quantum computing. The major
Circuit QED challenge is to introduce additional nonlinear control beyond Gaussian operations without adding signif-

icant bosonic loss or decoherence. Here we review recent advances in universal control of a single bosonic
code with superconducting circuits, including unitary control, quantum feedback control, driven-
dissipative control and holonomic dissipative control. Various approaches to entangling different bosonic
modes are also discussed.
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1. Introduction

Quantum computation holds the promise of solving some speci-
fic problems, such as factorization of large integers and simulation
of quantum many-body problems [1], much faster than any known
classical computer. To build such a quantum computer, the physi-
cal platform should work in the quantum regime with long coher-
ence time, fast quantum operations and good scalability, which are
daunting obstacles for current technologies. The promising strate-
gies to overcome such obstacles are quantum error correction
(QEC) [2-4] and fault-tolerant (FT) quantum computation [5],
where the coherence time of the quantum memories can be
extended and the quantum operations can tolerate some low-
probability errors (including errors in the QEC circuit) below a cer-
tain threshold.

In the prototypical model for quantum computation — the quan-
tum circuit model, a quantum bit of information (qubit) is encoded
into a two-level system, called a physical qubit, and the usual
approach for QEC is to encode a logical qubit into some subspace
of multiple physical qubits, so that different error processes lead
to distinguishable syndromes and can therefore be corrected. How-
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ever, the increased number of physical qubits for a logical qubit
introduces more decoherence for the system to correct. Moreover,
the logical gate operations become quite complicated since multi-
ple physical systems need to be addressed simultaneously. Hence,
it is still an outstanding experimental challenge to build a more
robust quantum register using multiple physical qubits.

An alternative scheme is to encode the quantum information
into bosonic modes such as harmonic oscillators [6,7]. A single
bosonic mode already provides an infinitely large Hilbert space,
from which we choose a logical subspace for an error-correcting
code [8-13]. Such bosonic QEC modes can be hardware-efficient
compared to the conventional QEC codes based on multiple qubits.
Moreover, the bosonic modes often have relatively simple deco-
herece processes (mainly bosonic excitation loss channel) during
which the bosonic excitations are lost one by one [14]. There have
been several error-correcting encoding schemes in a single bosonic
mode proposed to date, including the Gottesman-Kitaev-Preskill
(GKP) codes [10,15,16], cat codes [11,17,18], binomial codes [12],
rotation-symmetric codes [19] and other variations [13,20]. The
GKP codes, consisting of superpositions of highly squeezed states,
are not only protected against small shifts in position but also have
been shown to perform well against the more realistic amplitude
damping channel [13]. The cat codes use superpositions of coher-
ent states evenly distributed around a circle in phase space, which
can be protected against (single or multiple) bosonic excitation
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loss and dephasing errors. The binomial codes exploit superposi-
tions of Fock states weighted with binomial coefficients, which
can exactly correct the bosonic excitation loss, gain and dephasing
errors up to a specific degree.

For bosonic modes, the standard operations (e.g., displacement
operation, phase rotation, one-mode squeezing, beam splitting,
and two-mode squeezing) are all Gaussian operations, which can
only transform Gaussian states into Gaussian states [6,21]. How-
ever, universal control of a single bosonic mode can be achieved
by adding a single nonlinear operation [21]. When such a direct
nonlinear operation is difficult to realize directly, it is still possible
to implement an indirect nonlinear interaction by coupling the
bosonic mode to a finite-level ancilla. Moreover, quantum non-
demolition (QND) measurement of the ancilla enables
measurement-based feedback control and therefore arbitrary
operation on the bosonic mode. Here, we will review recent
advances in the approaches for universal control and arbitrary
operation of bosonic modes (Table 1), including unitary control,
quantum feedback control, driven-dissipative control and holo-
nomic control (Fig. 1a). In the first two approaches, an ancilla qubit
is coupled to a single bosonic mode to introduce nonlinear interac-
tion and feedback control, while in the remaining two approaches,
a special coupling between the bosonic mode and reservoir or a
special Hamiltonian of the bosonic mode is engineered to support
some stabilized manifold, consisting of all coherent superpositions
of multiple steady states that are free of any nonunitary effect
caused by the reservoir.

The physical platform we consider is circuit quantum electrody-
namics (circuit QED) [14,56-61], which is an analog of cavity QED
[62] using superconducting circuits [63,64]. Cavity QED engineers
the environment of the atoms by placing them in a cavity that sup-
ports only discrete bosonic modes of the electromagnetic field.
Examples of cavity QED systems include alkali atoms in optical
cavities [65] and Rydberg atoms in microwave cavities [66]. Circuit
QED uses superconducting qubits as artificial atoms coupled to
microwave resonators. A key advantage of circuit QED is the extre-
mely strong coupling between the superconducting qubits and the
cavity. Corresponding to the two encoding schemes based on
qubits or bosonic modes, there are two main routes in supercon-
ducting quantum computing with circuit QED.

Qubits can be encoded into the first two levels of superconduct-
ing artificial atoms, such as the most widely used transmons [67-
69], while the cavity resonators are used for qubit readout. Arbi-
trary single qubit rotations can be realized with resonant voltage
drives at the qubit frequencies [56,70], and gate errors can be

Table 1
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Fig. 1. (Color online) (a) Schematic of various approaches for controlling a quantum
system: (i) unitary control on the system alone or both the system and an ancilla;
(ii) quantum feedback control based on measurement of the ancilla; (iii) driven-
dissipative control with either engineered dissipation or Hamiltonian engineering;
(iv) holonomic quantum control based on only engineered dissipation. (b), (c)
Schematic and device photograph of a circuit QED system modeled as a coupled
qubit-oscillator system. The storage cavity with long coherence time is used to
encode quantum information, the transmon qubit acts as an ancilla for universal
control of the storage cavity, and the readout cavity with short coherence time is
used for qubit readout. Both the storage cavity and transmon qubit can be
addressed by microwave control fields. Reprinted with permission from Refs.
[27,55].
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reduced below 10 * by pulse shaping techniques [71,72]. Two-
qubit gates can be realized by either capacitive coupling [71] or
using the resonator as a mediator [56,70,73], with current error
rates being less than one percent [74,75]. Recent experimental
developments include implementations of quantum search algo-
rithms [76], quantum teleportation [77], simulations of topological
transitions [ 78], digitized adiabatic quantum computing [79], vari-
ational quantum algorithms [80], supervised learning with
quantum-enhanced feature spaces [81], quantum reservoir engi-
neering [82], quantum walks [83], advances towards quantum
error correction [84-87], building cloud-based devices and demon-
strating quantum supremacy with several tens of qubits [88].
Alternatively, a storage cavity resonator as a bosonic mode with
long coherence time can encode the quantum information, while

Recent theoretical and experimental advances in quantum control of bosonic modes in circuit QED.

Unitary control
Ancilla-induced nonlinearity

Unitary & feedback
Quantum adaptive control

Unitary & dissipation
Quantum Zeno dynamics

Theory: Theory: Theory:
- SNAP gate [22] - CPTP maps [27] - Dissipative cat [32]
- Optimal control [23,24] - Teleported gate [28] - Kerr cat [33]

- E-SWAP gate [25] - ET gate [29,30] - FT syndrome detection [34]

- CPHASE gate [26] - PI gate [31] - Bias-preserving Kerr cat [35]
- Bias-preserving dissipative cat [36]
- Holonomic gate® [37]
Experiments: Experiments: Experiments:
- SNAP gate [38] - QEC [42-44] - Dissipative cat [51-53]

- Optimal control [23]
- CNOT gate [39]

- CZ gate [40]

- E-SWAP gate [41]

- CPTP simulation [45,46]

- Teleported CNOT gate [47]
- FT parity measurement [48]
- PI SNAP gate [49]

- ET phase gate [50]

- Kerr cat [54]

2 This scheme uses only dissipation.
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the transmon qubits can act as ancillas to aid universal control of
the storage cavity (Fig. 1b, c). Such an encoding scheme can make
use of various bosonic QEC codes, which are hardware-efficient
compared to more standard qubit-based codes such as surface
codes. Moreover, bosonic QEC codes often have specific noise resi-
lience [36], and therefore can be concatenated with conventional
QEC codes to reduce the hardware overhead [36,89,90]. Recently
there has been significant experimental progress in bosonic QEC.
QEC based on cat codes or binomial codes in superconducting cav-
ities have reached or approached the break-even point [42,43], at
which the lifetime of the logical qubit exceeds that of the single
best physical qubit within the logical qubit. The encoding based
on GKP codes has also been demonstrated in trapped-ion mechan-
ical oscillators [91,92] and superconducting cavities [44]. However,
compared to conventional one-qubit and two-qubit control, uni-
versal control of single and multiple bosonic modes requires the
introduction of nonlinearity and therefore is more complex. This
will be the main topic of this review.

This review is organized as follows. In Section 2, we review the
universal control of a single bosonic mode with the aid of an ancilla
qubit dispersively coupled to it. Then we introduce, in Section 3,
the extension from the universal unitary control to quantum feed-
back control and arbitrary quantum channel construction for the
bosonic mode by QND measurement of the ancilla. In Section 4,
it is shown that reservoir engineering and Hamiltonian engineering
can be promising strategies to realize universal quantum computa-
tion in some unitarily evolving subspace of the bosonic mode. In
Section 5, the combination of reservoir engineering and holonomic
quantum control is introduced to realize universal control of boso-
nic modes. Then in Section 6, we introduce the quantum control
schemes to entangle different bosonic modes for universal quan-
tum computation. In Section 7, we briefly summarize the review
and outline some future directions for quantum control of the
bosonic modes. For convenience, we take the reduced Plank con-
stant as h = 1 throughout this review.

2. Unitary quantum control

Quantum control of a single bosonic mode (typically a harmonic
oscillator) can be achieved in the coupled qubit-oscillator system
with a qubit as an ancilla. Many theoretical and experimental
works were devoted to preparing arbitrary oscillator states
assisted by an ancilla qubit with Jaynes-Cummings (JC) coupling
[93-97]. However, it is more challenging to achieve universal con-
trol of the oscillator, which usually needs a multi-level ancilla [98],
slow adiabatic evolutions [99] or a large number of control opera-
tions [100].

In circuit QED, the transmon (as an anharmonic oscillator) can
act as an ancilla to aid the control of cavity bosonic modes (as har-
monic oscillators). If the ancilla and a single oscillator are strongly
off-resonant with the detuning much larger than their coupling
strength, we arrive at the dispersive Hamiltonian [55,101]

00

Ho = (A —jra'a)lj){jl + ecd'a,

Jj=0

(1)

where |j} labels the eigenstate of the ancilla, A; is the eigenenergy, y
is the dispersive coupling strength, ¢ is the oscillator frequency,
and a (a') is the annihilation (creation) operator of the oscillator
excitation. Note that here we have neglected the weak anharmonic-
ity of the cavity modes. The anharmonicity of the ancilla
(Aj — Aj 1 # Aji1 — Aj) makes it possible to selectively drive specific
ancilla transitions, so the infinite-dimensional ancilla can often be
truncated to a finite-dimensional one. Below the lowest ancilla
eigenstates {|0),[1),]2)---} are denoted as {|g),|e),|f)---}, and the
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eigenenergy difference between and is denoted as
wt = Al — Ao.

The dispersive Hamiltonian can be interpreted from two differ-
ent perspectives (Fig. 2b). On the one hand, the oscillator frequency
has a shift dependent on the ancilla state. This ancilla-state-
dependent shift of the cavity leads to changes in the amplitude
and phase of photons reflected from or transmitted through the
cavity and therefore enables a QND measurement on the ancilla
state [56,57]. On the other hand, the ancilla transition frequency
has a shift proportional to the oscillator excitation number. In
the strongly dispersive regime of circuit QED, the ancilla frequency
shift is much larger than the cavity line width and ancilla line
width, and therefore the ancilla spectrum is split into a series of
separately resolved peaks, representing the distribution of photon
numbers within the driven cavity [101]. Moreover, for quantum
control of the oscillator, such a strongly-dispersive coupling regime
makes it possible to selectively address the ancilla if and only if the
oscillator is in a specific number state, hence providing new oppor-
tunities for universal control of the oscillator.

Typically we can achieve universal unitary control and quantum
measurements of the ancilla, but only limited unitary control on
the oscillator, so the key point is to use the ancilla to realize some
other unitary control on the oscillator to achieve universal control.
Below we introduce two schemes: the unitary control either sepa-
rately acts on the ancilla or the oscillator and then is combined, or
acts on the both of them simultaneously (Fig. 2a).

le) )

2.1. Displacement operations and SNAP gates

The first scheme for universal control of the oscillator is to sep-
arately apply unitary control on the subsystems (either the ancilla
or the oscillator) and then combine them [22,38]. The unitary con-
trol on the ancilla may indirectly realize some unitary operations
on the oscillator if we make appropriate pre-section and post-
selection of the ancilla state. Then combining these indirect oper-
ations with the direct ones, we may realize universal control of
the oscillator.

One common kind of direct unitary transformation on the oscil-
lator is the displacement operation

D(x) = exp(aa’ — o*a),

(2)
which can be generated by a linear drive on the -cavity
Hc = ec(t)elcta’ + H.c. with o = —i [ ec(t)dt. However, the displace-
ment operation alone is not universal, i.e. it cannot generate arbi-
trary operations on the oscillator. To see this, note that the
displacement operation can only prepare a coherent state from
the vacuum, ie., |o)=D(x)|0) = exp(—|a*/2)5 2 (" /v/al)|n),
while universal control requires that any given target state can be
prepared from any initial state including the vacuum state.

The dispersive coupling of the oscillator to the ancilla intro-
duces a nonlinear term for the oscillator Hamiltonian, and makes
it possible to realize indirect control on the oscillator, such as the
selective number-dependent arbitrary phase (SNAP) gate,
S(@) = ey, 3)

n=0
which imparts arbitrary phases ¢ = {¢,};7, to the different Fock
states of the oscillator. The original proposal to realize SNAP gates
is to weakly drive the ancilla with multiple frequency components,
Hr = ex(t)eir|g){e| + H.c. with er(t) =3, Qe ™0 and ¢,(f)
being time-dependent. If Q < y, the driving component with fre-
quency @, — ny induces a unitary evolution in the ancilla subspace
{lg,n),|e,n)} = {|g),|e}} @ |n) with a negligible effect on the rest of
the system, while the driving phases {¢,(t)} depending on the oscil-
lator excitation numbers can induce different evolution paths in
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Fig. 2. (Color online) Universal unitary control of a harmonic oscillator via an ancilla qubit. (a) Schematic drawing of the experimental circuit QED system. A 1/4 coax-stub
cavity resonator is coupled to a transmon and readout resonator on a sapphire substrate. Input couplers close to the transmon and cavity deliver the respective time-
dependent microwave control fields &r(t) and &c(t). (b) Schematic of universal control of the qubit-oscillator system via displacements and SNAP gates. A weak displacement
operation (red dashed arrows) couples the states |g,n — 1) and |g, n) with strength y/n¢ for all n. The SNAP gate (blue solid arrows) can simultaneously accumulate different
geometric phases {¢,} to states {|g,n)}. Here we adopt the rotating frame associated with wca'a so that the states {|g,n)} have the same energy. (c¢) Experimental
demonstration of the control strategy in (b) (separately acting on the transmon and the cavity). Phasor representation, transmon spectrum, and Wigner function are shown
after each of the steps in the 1-photon Fock state creation experiment. In the phasor representation, the arrow corresponds to the complex amplitude c, of the initial cavity
state [y) = >_, c,|n) and the area of the circle is proportional to \c,,|2. The qubit spectrum refers to the ancilla transmon transition frequency dependent on the number of
photons in the cavity. (d) Experimental demonstration of control strategy based on numerical GRAPE algorithms (acting on both the transmon and the cavity simultaneously).
Lower panel: optimized transmon and oscillator control waveforms of length approximately 2m/y to take the oscillator from vacuum to the 6-photon Fock state. Solid
(dotted) lines represent the in-phase (quadrature) field component. Upper panel: oscillator photon-number population trajectory as a function of time conditioned on the
transmon in [g). A complex trajectory occupying a wide range of photon numbers is taken to perform the intended operation. Reprinted with permission from Refs. [22,23,38].

different ancilla subspaces, as shown in Fig. 2b. Suppose the initial
state of the whole system is a product state, [(0)=|g)®
SN caln) = 3N icalg. n) with N being the truncated oscillator exci-
tation number, then we may let the ancilla undergo cyclic evolutions
in each subspace {|g,n),|e,n)} and return to |g,n) at time 7. We can
tune ¢,(t) so that the final state accumulates different geometric
phases ¢, for different n [102], i.e., [(T)) = 3 ,c,e'|g,n). For
example, we may set ¢,(t) =0 for t € [0,7/2) and ¢,(t) = ¢, for
t € [t/2, 1] with T = m/Q being the Rabi period, and the unitary prop-
agator on the whole system (in the interaction picture associated
with the dispersive Hamiltonian in Eq. (1)) is

U(z,0) = |g)(8l @ S(P) + |e){e| @ S(=P), (4)

which implies that the unitary gate on the oscillator is S(@) (S(—@))
if the initial ancilla state is |g) (]e)).

The original SNAP gate based on the geometric phases can be
simplified by first decomposing the above propagator (Eq. (4)) as
U(t,0) = U(t, 7/2)U(1/2,0) with

U(7/2,0) = (lg)(e| + le)(gl) = I,
U(z,7/2) = |g){e| @ S(P) + |e)(g] @ S(=P),

(5a)
(5b)
where [ is the identity operator for the oscillator. Note that the first

half evolution U(t/2,0) causes a flip of the ancilla state while leav-
ing the oscillator state unchanged, and the second half evolution
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U(t,t/2) causes a further flip of the ancilla state and produces the
SNAP gate on the oscillator at the same time (Fig. 2b). So we may
simplify the SNAP gate by applying only the drive during the second
half period, which we may call the simplified SNAP gate. Moreover, if
the simplified SNAP gate is not completed, we have

U(t/2 + At,7/2) = cos 0(|g) (g] + le){e]) |

—isin0[|g) (e] ® S(@) + |e)(g| ® S(—P)], (6)
where At € [0,7/2] and 0 = QAt. In this case, the pre-selection and
post-selection of the ancilla state induces either the identity opera-
tion or SNAP gate on the oscillator. For example, P.U(t/2+
At,t/2)P, =1 and P,U(t/2 + At,t/2)P, = S(®) with Py, =|m)(m|
(m = g, e). Note that in the above discussions, we consider the lim-
iting case Q/y — 0, while in practice Q/y is finite and causes devi-
ations from the ideal SNAP gates [22,38]. Nevertheless, it is possible
to minimize such gate errors due to finite Q/y by optimizing the
detunings and pulse shapes of the multi-frequency drive on the
ancilla [26]. Besides the resonant driving approach for SNAP gates,
a photon-number dependent Hamiltonian of the oscillator can also
be engineered by off-resonantly driving the ancilla with multiple
frequencies [26].

It has been demonstrated that universal control of an oscillator
can be achieved by combining the displacement operations D(o)
and the SNAP gates S(¢) [22], since the generators of D(a) and
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S(¢) and the commutators between these generators generate the
full Lie algebra u(N) for any truncated oscillator space
{]0),...,IN—1)} [21]. As an example, we show in Fig. 2c that a
Fock state |1) of the oscillator can be created by applying the oper-
ation D(,)S()D(f,), where @ is fixed to be (m, 0, O, ...) while the
displacement parameters f3,,f, are obtained by numerical opti-
mization. A systematic method was presented in Ref. [22] to con-
struct an arbitrary unitary operation in any truncated oscillator
space. With this method, the number of operations to prepare
the oscillator Fock state |n) can be significantly decreased from
O(n) to O(v/n). Recently a more efficient scheme by parameter
optimization has been proposed to implement a broad range of
cavity control with only 3 to 4 SNAP gates [103]. Nevertheless, it
is still an open problem to find the optimal way for decomposing
an arbitrary target unitary into displacement operations and SNAP
gates.

2.2. Universal control by numerical optimization algorithms

The previous analytic approach based on displacement opera-
tions and SNAP gates implicitly assumes that the cavity drive
lec(t)] and transmon drive [er(f)] are never applied simultane-
ously, which makes the evolution more tractable. However, to find
more efficient control schemes, it is better to include the possibil-
ity of simultaneously driving both the ancilla and the oscillator.
The arbitrary control field can take the form

Her = ec(t)ec'a + er(t)el™’|g)(e| + H.c., (7)

where ec(t), e(t) are arbitrary complex-valued functions of time.
The exact form of the control field can be obtained by numerical
optimization algorithms [23], such as the Gradient Ascent Pulse
Engineering (GRAPE) method [24,104]. The basic procedure of the
GRAPE method is as follows: (1) specify the target unitary U and
the evolution time 7; (2) discretize the total time 7 into M equal
steps of duration At = t/M, and during each step the control ampli-
tudes are constant; (3) make an initial guess of the control ampli-
tudes, then calculate the fidelity between the implemented
unitary and target unitary, and also the gradient of the fidelity with
respect to each variation of the control amplitude in each time step;
(4) adapt the control amplitudes according to the fidelity gradient,
and repeat step (3) until a local maximum of the gate fidelity is
achieved.

Both ec(t) and er(f) can be optimized with GRAPE to achieve
universal control of the cavity. The numerical optimized pulses
thus obtained have been extensively used in experiments to con-
trol superconducting cavity modes [39,42,43,105]. As an example,
we show in Fig. 2d the control amplitudes ec(t), er(t) to prepare
the cavity state from the vacuum state |0) to the Fock state |6).
With this approach, Heeres et al. [23] have also realized a universal
set of gates on the logical qubit based on error-correcting cat codes
in a cavity. Compared with the SNAP gate that takes a rather long
time 21t/Q due to Q/y < 1, the logical gates based on GRAPE algo-
rithm take a much shorter time 2m/y.

2.3. Other approaches

Besides the above schemes, there are various other approaches
to control harmonic oscillators via ancilla-induced nonlinearity.
One approach is called photon blockade control, in which the fre-
quency of er(t) is set as ey — Ny to drive resonantly the transition
|g,N) < |e,N), therefore blockading the population transfer
between the cavity subspace {|0), |1), ..., [IN— 1)} and the rest
of the cavity Hilbert space [106]. Then universal control of the N-
level qudit can be realized by optimizing ec(t) with GRAPE [107],
which has been experimentally demonstrated in Ref. [108]. In
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another approach, using a single transmon as the central processor,
universal quantum operations have been realized between arbi-
trary eigenmodes of a linear array of coupled superconducting res-
onators, realizing a random access quantum information processor
[109].

It should be mentioned that the weak point of the transmon as
an ancilla is its small dispersive coupling strength with the cavity
modes. This limits the control fidelity of both SNAP gates and
blockade control. Such limitations may be overcome in the future
by using better ancillas. For example, with an ancilla oscillator, a
superconducting oscillator can have stimulated nonlinearity by a
three-wave interaction, enabling control of the single-photon man-
ifold at rates faster than the dispersive protocols [110]. Other pos-
sible better ancillas include the C-shunt flux qubit with large
anharmonicity [111] and the fluxonium with millisecond coher-
ence time [112,113].

3. Quantum feedback control

In the last section, the system (an oscillator and an ancilla) as a
whole are assumed to be a closed system and therefore can be suf-
ficiently described by unitary dynamics. However, the inevitable
coupling of the system to the environment typically induces non-
unitary evolutions of the system, which can be fully characterized
by completely positive and trace preserving (CPTP) maps [1,114]
(also called quantum operations or quantum channels). Hence, it
is important to systematically extend the quantum control tech-
niques from a closed system to an open quantum system. In this
section, we will show that an arbitrary CPTP map of the system
can be constructed by coupling the system to an ancilla qubit with
QND readout and quantum feedback control.

Feedback control, where information about the system state is
fed back to the controller for correction, is widely used in classical
control theory. However, its extension to the quantum world is
nontrivial [115], since a quantum measurement of the system will
inevitably affect the quantum state of the system. Quantum feed-
back control generally falls into two categories: measurement-
based feedback control [116] and coherent feedback control
[117]. Below we will show that the measurement-based approach
can be used to construct arbitrary CPTP maps and realize robust
quantum operations.

3.1. Arbitrary CPTP map construction

A CPTP map can be described by the Kraus representation [114]

N
é(p) = Y _Kipk], (®)

where p is the density matrix of the system we consider and {K;}",

is the set of Kraus operators satisfying E?LIKIKI = [ to preserve the
trace of p. The Kraus representation is not unique, since a new set of
Kraus operators {F;}", can be constructed with any N x N unitary
matrix U, F; = }7;U;K;, characterizing the same CPTP map. The min-
imum number of Kraus operators is called the Kraus rank of the

CPTP map, and is no larger than d® with d being the Hilbert space
dimension of the system.

3.1.1. Construction of CPTP maps with arbitrary Kraus rank

For the construction of arbitrary CPTP maps, Lloyd and Viola
| 118] first showed that it is sufficient to repeatedly apply Kraus
rank-2 channels in an adaptive fashion, but they did not consider
efficient construction with a low-depth quantum circuit. Recently
Shen et al. [27] have extended the binary-tree construction for
arbitrary positive operator-valued measure (POVM) [119] to an
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efficient protocol for CPTP map construction. In this protocol, a
CPTP map with Kraus rank-N can be constructed with an ancilla
qubit by the lowest possible circuit depth L = log,N, where each
round of operation consists of one joint unitary of system and
ancilla and one QND measurement on the ancilla qubit. Below
we will briefly introduce such a binary-tree construction for CPTP
maps.

Let us first consider the construction of a rank-2 CPTP map with
Kraus operators {Kjg, K, }, which can be achieved by only one round
of operation: (1) initialize the ancilla qubit in |0} (the qubit state
basis being {|0),|1)}); (2) perform a joint unitary operation
U € SU(2d) with d being the dimension of the system; (3) discard
or trace over the ancilla qubit. The key point is to design U so that
its d x d submatrices satisfy (0|U|0) = K, (1|U|0) = K;.

The quantum circuit to implement a rank-N CPTP map with
Kraus operators {Ko, ..., Ky} consists of L = log,N rounds of oper-
ations (Fig. 3a). Each round of operation includes: (1) initialization
of the ancilla qubit in |0); (2) joint unitary gate over the system and
ancilla (conditional on the measurement outcomes from previous
rounds); (3) QND readout of the ancilla, and (4) storage of the clas-
sical measurement outcome for later use. The Ith round unitary
gate U,y is represented by the node of the binary tree
b" = (byb,...by) € {0.1}' with =0, ..., L1, while the Kraus
operators K,q are associated with the leaves of the binary tree
b e {0,1}* (Fig. 3b). A systematic way is presented in Ref. [27]
to design the nodes U,y so that the leaves of the binary tree are
exactly the desired Kraus operators, K,n=K; for
i=(byby...b); +1 <NandK;.y =0((---), denotes a binary num-
ber). Arbitrary quantum channels can also be constructed in the
quantum circuit model including controlled-not (CNOT), single-
qubit gates and partial trace operations on the qubits and any
ancilla, and with free single-qubit gates the minimum number of
CNOT gates has been found in Ref. [120].

3.1.2. Physical implementation with circuit QED

Circuit QED in the dispersive regime is a promising platform to
implement the arbitrary CPTP map construction. The transmon
qubit acts as the ancilla (the transmon state |g/e) corresponds to
the ancilla state |0/1) in the last subsection), and a d-
dimensional subspace (e.g., the lowest d Fock states) of the storage
cavity with high-quality-factor (high-Q) acts as the qudit. The QND
readout of the transmon qubit can be realized by coupling a read-
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Storage Readout E- VW Detector
cavity cavity =
Output

|
Drivegg

Science Bulletin 66 (2021) 1789-1805

out cavity with low-Q to the transmon. Then the readout result is
fed back to a controller that induces an effector to implement the
conditional control on the qudit (Fig. 3c).

Similar to the SNAP gates, we can implement the following
entangling unitary gate for the whole system including the trans-
mon and the cavity,

Uene(0) = f[ exp(—iYafa/2),

n=0

9)

where 0 = (0o, ..., 6y), and Y, = —i|g,n)(e,n| + H.c. is the Pauli-Y
operator for the two-dimensional subspace {|g,n), |e,n)}. The drive
on the transmon for the above gate is Hem =
5, @ 10t gy (e| + H.c,, where the driving amplitude €, and
the gate time t should satisfy 0, = 2Q, 7. This entangling gate pro-
duces a CPTP map with Kraus operators {S,,S.} with S, =
diag(cos by, ...,cosl)y) and S, = diag(sin 0y, ...,sind,). If we precede
U, with a unitary V' acting on the qudit alone and perform an con-
ditional unitary W = |g)(g| ® W, + |e){e] ® W, after Uen, the entan-
gling gate becomes U, , = WU.,.V' (Fig. 3d), which is known as the

ent
“cosine-sine” decomposition [121] that can decompose an arbitrary

unitary into CNOT and single-qubit gates. The Kraus operators cor-
responding to U, are (g|U.,|g) = WSV, (e|U.. |g) = W.S.V',
which are singular value decomposition of any operator for the
qubit [1] and therefore can simulate any rank-2 CPTP map. Likewise
we can use such entangling gates to simulate the CPTP map with
any Kraus rank.

Recently there have been several experiments for quantum
channel simulations in various platforms, including trapped ions
[91], nuclear mangnetic resonance (NMR) system [122] and IBM's
cloud computer [123]. In particular, using a scheme similar to
the above one, Hu et al. [45] first realized arbitrary quantum chan-
nel simulation for a single photonic qubit in circuit QED. Although
this experiment only simulates quantum channels with Kraus
rank-2 for a 2-level qubit with one round of adaptive control, a
recent experiment has extended the capability to simulate arbi-
trary rank-16 channels for a 4-level qudit with 4 rounds of adap-
tive control [46]. For the platforms other than circuit QED, the
real-time adaptive control is often the main limitation: for trapped
ions, it is quite challenging to avoid the recoil problem when per-
forming adaptive measurement for trapped ions; for NMR systems,
single-shot readout is not available, so many ancillas must be used

K,
(b) Voo e
Uo U Ko1o
U o K011
L U K190
U = K01
: U Kllo
> K14
(d)
Cavity qudit

Transmon qubit

Fig. 3. (Color online) Arbitrary CPTP map construction with quantum feedback control. (a) Binary tree representation with depth L = 3. The Kraus operators K., are
associated with the leaves of the binary tree, b"" ¢ {0, I}L. The system-ancilla joint unitary to apply in Ith round U,» depends on the previous ancilla readout record
b — (biby...by) € {0,1 }I associated with a node of the binary tree. (b) Schematic setup of a circuit QED system used for constructing an arbitrary quantum channel. (c)
Quantum circuit for arbitrary channel construction. The dimension of the system d can be arbitrary and the circuit depth depends only on the Kraus rank of the target channel.
(d) The quantum circuit to implement an arbitrary Kraus rank-2 channel with the circuit QED system. Reprinted with permission from Ref. [27].

1794



W.-L. Ma et al.

to simulate the adaptiveness; the IBM's cloud computer does not
allow real-time adaptive control.

The ability to construct an arbitrary CPTP map may have various
applications, such as QEC and quantum state initialization/stabi-
lization. For example, the simulated quantum channel enabling
QEC can help achieve the Heisenberg limit in quantum metrology
[124,125], and dissipative quantum circuits consisting of
sequences of quantum channels subject to specific constraints
can lead to finite-time robust state stabilization [126].

3.2. Robust quantum operations with adaptive control

The measurement-based adaptive control can also help achieve
robust quantum operations, such as FT quantum measurements
and FT quantum gates. Below we show the recent theoretical and
experimental advances of FT operations enabled by adaptive con-
trol in circuit QED.

In Section 2, we have shown that universal control of a bosonic
mode can be achieved with the aid of an ideal ancilla. In addition,
the ancilla can measure the even-odd excitation number parity of
the bosonic mode (as an error syndrome detecting single excitation
loss). This can be done by first preparing the ancilla in state
(Ig) + |e))/ V2, evolving with the dispersive Hamiltonian (Eq. (1))
for a time 7/y, and finally performing Ramsey interferometry on
the ancilla to determine its phase. However, ancilla systems are
typically more vulnerable to environmental noise, e.g., the trans-
mon coherence time (~ ps) is much shorter than the cavity mode
coherence time (~ms), so the ancilla errors (e.g., relaxation error
|g){e| and dephasing error |e){e| — |g)(g|) during the operation time
can propagate to the oscillator and corrupt the encoded informa-
tion irreversibly. This drawback calls for new operation schemes
that are FT to these ancilla errors.

A recent experiment shows that the parity measurement of a
cavity mode in circuit QED can be made FT to the ancilla transmon
errors by using three transmon levels and adaptive control [48].
The three-level transmon (|g), |e), |f)) is coupled to a cavity mode
with

Has = —ya'a(le)(e| + If) (])-

Note that the dispersive coupling strength is the same for the
transmon in |e) or |[f) (y-matching condition), which can be real-
ized with an engineered side-band drive [48]. The dispersive
Hamiltonian commutes with the dominant ancilla relaxation error
(le}{f]) and also any ancilla dephasing error (c.|g)(g + c.|e}{e|+
crlfy(f| with cg, ce, ¢f € C). Such an ancilla error during the mea-
surement is equivalent to an ancilla error at the end, so although
the measurement fails if the error happens, the cavity logical state
is still well protected and the measurement errors can be overcome
by majority voting.

With the same three-level ancilla satisfying the y-matching
condition, the SNAP gates in Section 2.1 can be made FT to the
dominant ancilla relaxation error and any dephasing error by adap-
tive control [31,49]. Such a SNAP gate is implemented by applying
the Hamiltonian that drives the |g) < |f) transition instead of the
|g) < |e) transition, with the effective Hamiltonian in the interac-
tion picture as

Hine = Q1) (f| © S(— ) + If) (g] & S(P)].

Without any ancilla error, the logical gate on the cavity with the
ancilla going from |g) to [f) is the ideal SNAP gate S(¢). With a sin-
gle ancilla relaxation error |e)(f| during the control, the ancilla ends
in |e) and the final logical operation is still S(¢). With a single
ancilla dephasing error (e.g., |f){f] — |g){(g|) and a projective mea-
surement of the ancilla after the gate, the ancilla may end in [f)
with the logical gate still being S(¢), or end in |g) with the logical

(10)

(11)
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gate being the identity operation (Fig. 4a, b). Thus the control pro-
tocol can be repeated if the ancilla is measured in |g) until the
SNAP gate succeeds. Such error-corrected SNAP gates have recently
been experimentally realized [49] with a reduction of the logical
gate error by a factor of two in the presence of naturally occurring
decoherence, a sixfold suppression of the gate error with increased
transmon relaxation rates and a fourfold suppression with
increased transmon dephasing rates (Fig. 4c, d).

Recent theory shows that the error-corrected SNAP gate belongs
to a general class of FT gates on a logical system protected against
Markovian ancilla errors, called path-independent (PI) quantum
gates [31]. The PI principle requires that for given initial and final
ancilla states, the logical system undergoes a unitary gate indepen-
dent of the specific ancilla path induced by control drives and
ancilla error events. With a certain initial ancilla state, the desired
quantum gate on the logical system is successfully implemented
for some final ancilla states, while the other final ancilla states her-
ald a failure of the attempted operation, but the logical system still
undergoes a deterministic unitary evolution without loss of coher-
ence. So the PI gate on the central system can be repeated until it
succeeds. A special class of the Pl gates is the error-transparent (ET)
gates for a QEC code, theoretically proposed in Refs. [29,30] and
experimentally demonstrated [50] against a specific system error.

The FT measurement and PI gates belong to an interesting class
of CPTP maps, called quantum instruments [27]. For quantum
instruments, both the classical measurement outcomes and the
post-measurement states of the quantum system are tracked, with
the corresponding CPTP map

Ea(p) =Y _ealp) @ W) (M, (12)
p=1

where {|y)(u|}ﬁ:1 is a set of M orthogonal projections of the mea-
surement device, and {:",#}i‘f:1 is a set of completely positive and

trace nonincreasing maps while Z?f:]r,u(p) preserves the trace.
For the FT parity measurement, {&,} contains either the parity mea-
surement channels or the identity channel, while for PI gates {&,} is
a set of unitary channels.

4. Driven-dissipative control

The inevitable coupling of a quantum system to the reservoir
generally deteriorates the coherence and coherent control of the
system. However, in some cases, the system can be driven into a
unitarily evolving steady subspace, which can encode and process
the quantum information while being largely immune to environ-
mental noise. This can be achieved by either reservoir engineering
(designing both the system Hamiltonian and the coupling to the
reservoir) or Hamiltonian engineering (designing only the system
Hamiltonian), which are both called driven-dissipative control in
this paper. In this section, we will discuss the formation and con-
trol of stabilized manifolds of Schrodinger cat states in cavity boso-
nic modes with both approaches.

4.1. Reservoir engineering

Reservoir engineering is a powerful technique to realize steady
state or subspace in condensed matter physics and quantum infor-
mation processing [127-129], since the steady state is often an
exotic phase of matter that is difficult to stabilize in nature
[128], while the steady subspace may be used to store, protect
and process quantum information [129]. In particular, when the
quantum system is coupled to a Markovian reservoir, the time evo-
lution of the system is governed by the Lindblad master equation
[130],
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Fig. 4. (Color online) Error-corrected (PI) SNAP gate in circuit QED. (a) PI principle of error-corrected SNAP gate demonstrated by the ancilla transition graph. The ancilla
transition from the ground state |g) to the second excited state |f) (green arrows) implements the SNAP gate 5(¢p) on the logical system (boxes), while the reverse ancilla
transition from [f) to |g) implements the inverse SNAP gate S(—¢). The ancilla transition from any state to itself (red closed loops) produces the identity operation on the
logical system. Without ancilla errors, all closed loops in the ancilla transition graph produce the identity operation on the logical system, satisfying the Pl condition. With the
y-matching condition in Eq. (10), the dominant ancilla relaxation error from [f) to |e}) (blue arrows) produces an identity operation on the logical system, still ensuring the Pl
condition. The ancilla relaxation from |e) to |g) breaks the Pl condition but is a second-order error. (b) The SNAP operation for implementing a logical rotation S(¢) = e 4
with Z;, = |0.)(0;| — |1,)(1,| for the binomial code {|0;) = (|0) + |4))/v/2,|1.) = |2)}. The control consists of applying a Raman drive detuned from the |g) « |e} transition (blue
arrow) as well as a comb of control drives (green arrows), detuned in the opposite sense from the |e) < |f) transition and separated in frequency by twice the ancilla-cavity
dispersive shift 2. The measured Wigner tomograms of the cavity state, postselected on the final ancilla state following a |g) <+ |f) swap (dashed arrows), are shown to the
right. (c) Error-corrected SNAP gate performance from randomized benchmarking (RB) and interleaved randomized benchmarking (IRB). The effective gate error probability
can be learnt by fitting both the RB and IRB results to an exponential model (dotted lines). The error probability without interleaved logical gates is y,; = 2.5%+0.1% (black),
while the error probability associated with the error-corrected S¢ (non-error-corrected Syc) operation is p, — Vs = 2.4%£0.1% (4.6%+0.1%) from the red (blue) curve. (d)
Robustness of the error-corrected SNAP gate with added ancilla dephasing (|f)(f| — |g){g|) and relaxation noise rates (|e){f|). In both cases, S¢ (red markers) is significantly less
likely than Syc (blue markers) to translate ancilla errors induced by the added noise into logical errors. The dotted lines are derived from a full quantum simulation using
independently measured system parameters. Reprinted with permission from Ref. [49].

p= (13) photons in pairs, and the energy decay of the mode also happens

Lp = —iH,p]+> DFp,

!

where the Liouvillian £ is a superoperator on the system, H is the
Hamiltonian of the system including the driving term,
DIF)|p = 2F\pF] — F|Fip — pFF, is the Lindbladian dissipator with
F; being the dissipation-inducing jump operator that can depend
on a parameter. The Markovian reservoir engineering refers to the
design of the system Hamiltonian H and the jump operators {F,},
so that a stabilized manifold consisting of multiple steady states
[32,131,132] is formed to encode quantum information and even
allow QEC.

4.1.1. Stabilized manifold with quantum information
Single-mode two-photon process. Consider that a single cavity
mode is driven by an external field such that it can only absorb

in pairs of photons, then the Lindbladian master equation describ-
ing such a two-photon driven-dissipative process is

DlVia(a® — o)]p,

where ¢, and k, are the driving amplitude and decay rate,
respectively. The second line of the above equation shows that
the driven-dissipative dynamics can be described by a single
Lindbladian dissipator D[yKz(a® — o?)] with o= \/2€/K2. The
stabilized manifold is determined by P[/K3(a* — o?)]p =0, and
any state satisfying a?|¢) = o2|¢) or a|¢) = £a|¢) is in this mani-
fold. Such a stabilized manifold also forms a decoherence-free
subspace [4]. The stabilized manifold for two-photon process is
the two-dimensional Hilbert space spanned by two coherent
states {|a),| — )} (Fig. 5a). For any initial state p(0), the cavity

p= [6a? - pl+ Dyaaddp = (14)

1796



W.-L. Ma et al. Science Bulletin 66 (2021) 1789-1805

(a) (b)
T‘
,(\ 1
|c2)
\ Querftum
‘a)’_:nfllﬁo_ld._‘ I_a\f 'pp— .
/ lc2) \ o .
Hilbert space —L
(d)

At(ps)

Fig. 5. (Color online) Formation and control of a stabilized manifold by reservoir engineering. (a) Confinement of a quantum state belonging to a large Hilbert space into a
two-dimensional quantum manifold spanned by {|C,),|C,)}. The cube represent a multi-dimensional Hilbert space, while the sphere represents the manifold of states.
Stabilizing forces (orange arrows) direct all states toward the inner sphere without inducing any rotation in this subspace. (b) Conceptual representation of quantum Zeno
dynamics in the stabilized manifold. The dark blue circle represents a cross section of the Bloch sphere of a two-state manifold in (a). The quantum Zeno dynamics
corresponds to the motion along the circle. The trajectory induced by a drive in the large Hilbert space has a component both along the circle and out of it. The nonlinear
dissipation and drive (orange arrows) cancels the movement outside the circle while leaving only the rotation on the circle. (¢) Schematics of the experimental device. The
quantum manifold is stabilized within the Hilbert space of the fundamental mode of an aluminium post storage cavity (cyan). This resonator is coupled to two Josephson
junctions on sapphire (yellow for the reservoir and crimson for the transmon qubit), which are read out by stripline resonators (gray). Three couplers (brown) bring
microwave drives into the system and carry signals out of it. (d) Sequence of different drives in (c) for quantum Zeno dynamics. To make resonant the conversion between one
reservoir photon and two storage photons, two pumps on the reservoir with frequencies 2f — f, and f, are used to create pairs of storage photons. An additional linear
displacement drive on the storage cavity induces the quantum Zeno dynamics. The drive on the transmon qubit is to initialize the storage cavity in the stabilized manifold and
read-out the parity of the storage cavity. (e) Evolution of the measured parity of the storage cavity as a function of time. The initial cat states are even cat state |C, ) with
|o[* = 2, 3, 5 (circles, squares, diamonds). The storage drive is either off (black markers) or on (colored markers) with various strengths given in units of a chosen base
strength €. Reprinted with permission from Ref. [52].

mode asymptotically converges to some pure or mixed state The stabilized manifold is the four-dimensional Hilbert space
p(o0) in such a stabilized manifold. For example, if the initial spanned by {| £ §).| £ i)} with f = (2e4/k4)"%. When the cavity

state is the vacuum state |0) or the single-photon Fock state mode starts at initial Fock states [0}, |1), |2), |3), it asymptotically
[1), the asymptotic state is the pure even (|C;)) or odd (|C,)) converges to the pure states

Schrodinger cat state with
CF™) = Na(IC5) + 1)),

) = Na(lo) £ | — o)), (15)
C(1m0d4) _ Co\ —ilCs
where N3 is a normalization constant. | B ) =Nl ﬁ> il 'ﬁ>)’ (17)
The logical qubit can be encoded into the even-odd Schrodinger ‘C(2mnd4)) — NA(C) =€)
! i I B —Valllg if
cat states {|C,),|C,)} (with large o so that |(C,|C,)| = 0) [32]. A
qubit encoded in such a way is called the dissipative-cat qubit. ‘C'(:m‘:'d“)) = Na(IC;) +1ICip)).

For such a logical qubit, the dephasing error D[,/K,a'a] can be lar-
gely suppressed when &, < k3, while the single photon loss error which form the four-component subspace of the Schrodinger cat

D|[/K14a] causes a bit-flip error and therefore cannot be suppressed states.
by the two-photon process. Experimentally Leghtas et al. [51] first To suppress the single photo loss error, which is usually the

successfully confined the quantum states of a superconducting  dominant error channel of the cavity modes, we can use the encod-
CﬂVity to the stabilized manifold spanned by the even-odd cat ing scheme that can track the single-photon jump event and per-
states. form QEC. This can be achieved by encoding the qubit into the

Single-mode four-photon process. The four-photon process is logical subspace spanned by the two cat states {|COm°%) |c2mod4y)
described by letting both the absorption from the driving field with even photon number parity. Then a single phbton loss
and the energy decay into the bath happen through quadruples changes the photon number parity from even to odd. The photon
of photons, number parity of the cavity mode can be monitored in a QND
manner by a Ramsey experiment on an ancilla transmon qubit dis-
persively coupled to the cavity.

p= [eaa" —eat, pl+ DiyKaatlp = Dlyka(a* —pY)]p. (16)
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Single-mode d-photon process. The two-photon and four-photon
processes can be generalized to d-photon processes (d = 2, 4, 6,...
being an even integer) with

p= lead — ciat.p) + DlyRgallp

= DlyKq(a’—y9)lp, (18)
with 7 = (2¢4/K4)""%. The stabilized manifold is the d-dimensional
Hilbert  spanned by {lyiv)} with 2, = exp(2imv/d)
(v=0,1,...,d—-1), which are d coherent states lying equidis-
tantly in the phase space. The asymptotic states or cat code are d
different superpositions of such d coherent states {|C/ mod dyy

(u=0,1,...,d—1)with

2d-1
Cmdd) = N D 1 ),

v=0

(19)

which is a superposition of yumodd Fock states. The d-dimensional
Hilbert cat space can be divided into d/2 subspaces labeled by
s=0,1,...,d/2—1, where the s-subspace is spanned by two
states {\Cﬁ.m"d 4, c; d2)meddyy and may encode a logical qubit
[17,18]. After losing k photons, the s subspace is mapped to the
s — k subspace. Hence we can distinguish up to d/2 — 1 photon
losses without destroying the encoded logical states by projectively
measuring the excitation number mod d/2 (called the “Z;;; mea-
surement”). We can also encode a qudit into the d/2-dimensional
subspace {|C?. mod dy |C2f moddy - |C§d Zymeddyy that can correct a
single photon loss error.

Multimode processes. The driven-dissipative processes can be
extended from a single cavity mode to a two modes with operators
{a,b} [133]. Suppose that both modes simultaneously absorb
energy from the driving field and release energy to the bath
through pairs of photons,

p= [epab™a? — €,a°b p| + D[\ /Kaa®b’|p = Dikpa(a®h’ —5*)|p. (20)

The stabilized manifold is spanned by the pair-coherent/Barut-
Girardello states [134]. Quantum information encoded in a sub-
space of such a manifold is immune to the dephasing errors in both
modes. Most interestingly, arbitrary photon loss errors in either
mode can be corrected by continuously monitoring the photon
number difference between the two modes. The two-mode gener-
alization above can also be extended to the multimode case, with
the additional advantage of being able to correct for higher-
weight products of losses or for photon losses and gains at the
same time [133].

4.1.2. Quantum gates by quantum Zeno dynamics

We have shown that the logical qubit encoded in the stabilized
manifold can be dynamically protected from the photo loss and
dephasing errors and therefore act a good quantum memory. It is
also possible to perform universal gates on such a logical qubit.
The arbitrary rotations around x-axis of a single qubit and the
two-qubit entangling gate can be generated by quantum Zeno
dynamics.

When a quantum system is frequently measured to determine
whether it is in the initial state, the system will always stay in
the initial state, which is called the quantum Zeno effect [135].
But if frequent measurements are performed to see if it is in a
multi-dimensional subspace, the system is not freezed but evolves
according to an effective Hamiltonian obtained by projecting the
initial Hamiltonian into the measurement subspace. Such dynam-
ics are called Quantum Zeno dynamics [136]. The driven-
dissipative processes act as a continuous measurement on the
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quantum system to see if it is in the multi-dimensional stabilized
manifold, so if we apply another driving Hamiltonian H, the effec-
tive driving Hamiltonian is He = PcHP: with P being the projec-
tor onto the stabilized manifold (Fig. 5b).

For the two-photon process with the logical qubit {|C,),|C,)},
we may apply a linear drive on the oscillator, Hy = €,(a + a'). The
two-photon process acts as a continuous measurement which pro-
jects the driving Hamiltonian onto an effective x-axis rotation
Hamiltonian in the qubit space,

PcHyPc = Q.X, (21)

where  Pc=|CL)(CL| +]C,){C, | X =[C)(C,| +1C,)(C,|  and
Qy ~ & (o + a*). One can see that a population transfer between
the even cat state |C,) and the odd cat state |C, ) is enabled by a res-
onant single-photon drive on the system (Fig. 5d, e). Recently Tou-
zard et al. [52| have experimentally observed such coherent
oscillations between the even and odd cat states by tuning the
desired dissipation rate (two-photon loss rate k,) to be 2 orders
of magnitude larger than the undesired dissipation rate (single-
photon loss rate x) (Fig. 5¢).

For the four-photon process with the logical qubit

{|comed 4y 112 M4 the population transfer between two logical

states needs a two-photon drive Hy, = €, (a® + a?) with the pro-
jected Hamiltonian in the stabilized manifold as

PeHpPr = Qo (Xp + X13), (22)

where PC’ _ E?:Olcicmod 4) (CLde 4|7 XJ] _ ‘CLmOd 4>(ijmod 4|+ |Cj;[mod 4)
(C.™44) and Q) =~ €,(f* + 7). The above effective Hamiltonian
have two driving components: one acting on the qubit subspace
to drive the Rabi oscillation between |C2™**} and |C2™%), and
the other one acting on the remaining subspace to drive the Rabi
oscillation between |C. ™44y and |C3™)} with the same driving
amplitude. Such a gate has the additional advantage of being
error-transparent to single-photon loss error, since in the stabilized
manifold the single photon loss operator commutes with the effec-
tive Hamiltonian and therefore can be detected/corrected at the end
of the gate without compromising the encoded quantum informa-
tion [29,30]. For a general d-photon processes to a qubit, the x-
axis rotation Hamiltonian is Hyg = €,4(a? + a™).

In addition to the x-axis single-qubit gates, the two-qubit
entangling gates can be realized by applying appropriate driving
fields. To complete the set of universal gate, we may turn off the
driven-dissipative control and apply a Kerr Hamiltonian to imple-
ment single-qubit 7/2-rotation around the z axis [32]. The univer-
sal control of the qubits encoded in single modes can be extended
to those encoded in multiple modes [133]. For example, an arbi-
trary x-axis rotation of the qubit encoded in double modes can

be realized by the drive H, = €,,(ab + b'a').
4.2. Hamiltonian engineering

Apart from reservoir engineering, it is also possible to form and
process a stabilized manifold by only Hamiltonian engineering. The
stabilized manifold can be chosen to be a degenerate eigenspace of
the system with a designed Hamiltonian, which is typically decou-
pled to the remaining eigenspace by a large energy gap and there-
fore can be protected from specific system errors (Fig. 6a).

4.2.1. Formation of the Kerr-cat qubit

Consider the Hamiltonian of a Kerr-nonlinear resonator under
the application of a single-mode squeezing drive [33,137], written
in a frame rotating at the resonator frequency «c,
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Fig. 6. (Color online) Formation and control of a stabilized manifold by Hamiltonian engineering. (a) lllustration of the eigenspectrum of a Kerr-nonlinear resonator with a
squeezing drive. The even-odd cat states |C;) are two eigenstates with a large energy gap from the other eigenstates. (b) Photograph of the nonlinear resonator (purple frame)
inside the copper section of the readout cavity. Also represented are the x-axis rotation drive (w,) and the squeezing-generation drive (2¢,). Here ), denotes the resonator
frequency and is equivalent to ¢ in Eq. (1). (¢) Schematic of the nonlinear resonator with pad offset § to set the dispersive coupling to the readout cavity and spiral symbol
representing the nonlinear inductor (SNAIL element). (d) Scanning electron micrograph of the SNAIL element consisting of four Josephson junctions in a loop threaded by an

external magnetic flux. (e) Pulse sequence for initialization (to |C})), Rabi oscillation and readout of the Kerr-cat qubit. Here w; —

2y, and wy is the frequency of the readout

cavity. (f) Dependence of the Rabi frequency on /3. (g) Dependence of the experimentally measured Rabi oscillations on evolution time At and on the phase of the Rabi drive
arg(&;). (h) Cuts of (g) for the three Rabi-drive phases indicated by dashed lines. (i) Simulated Wigner function of the oscillator density matrix corresponding to the symbols in

the bottom panel of (h). Reprinted with permission from Ref. [54].

2
Hyenr =—Ka?@® + (620" + 3a?), = —K(a"? —or?) (a® — o?) +%. (23)
Here K is the strength of the nonlinearity and o = /€, /K. The sec-
ond line makes it clear that the even- and odd-parity cat states |C})
are the degenerate eigenstates of this Hamiltonian [33,137]. This cat
subspace is separated from the rest of Hilbert space by a gap
Weap x 4K|o)> [33]. A qubit encoded in such a way is called the
Kerr-cat qubit. Observe that as the strength of the two-photon drive
decreases, that is |e;| — 0 and hence || — 0, the states |C) contin-
uously approach the vacuum and single-photon Fock state, respec-
tively. In fact, in this limit the Kerr-cat qubit is essentially the well-
known transmon which encodes a “Fock qubit” in the two photon-
number states: vacuum and single-photon Fock state. It follows
that, an initially undriven Kerr-nonlinear resonator (= Fock-qubit)
prepared in vacuum or single-photon Fock state will respectively
evolve to the states |C,) or |C,) as the amplitude of the squeezing
drive is increased adiabatically. For the adiabatic condition to be
satisfied, the rate of change of the two-photon drive must be slower
than the minimum energy gap, |e2(t)|/|€2(t)] < 2K. So typically a
large Kerr-nonlinearity results in faster cat state. Nevertheless, it
is possible to apply counter-adiabatic two-photon drive to go faster
than the adiabatic condition would allow [33].

Like the case of a dissipative-cat qubit (Eq. (14)), the probability
of a bit-flip error (e.g., due to frequency fluctuations D[,/Ka’a)) is
exponentially suppressed compared to a phase-flip error (for
example due to single photon loss D[/kd]) in the Kerr-cat qubit
as well. While the dissipative-cat qubit is protected against bit-
flip errors by a decoherence-free subspace enabled by engineered
dissipation [36,53,138], the Kerr-cat qubit is protected from such
errors by the underlying eigenspace structure of the two-photon
driven Kerr-nonlinear resonator [34,35,54]. Interestingly, the
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Kerr- and dissipative-cat qubit realizations are completely compat-
ible with each other and have complementary properties [33-35].
The inherent nonlinearity of the Kerr-cat mode provides the ability
to implement fast, high-fidelity gates. It also naturally provides the
ability to parametrically engineer two-photon dissipation, which
can be subsequently used for autonomous correction of possible
leakage errors [33-35]. Recently, the adiabatic preparation of
Kerr-cat was experimentally demonstrated [54] and the asymme-
try in the bit- and phase-flip errors was also confirmed. Fig. 6b-d
shows the device of the superconducting setup for realization of
the Kerr-cat qubit [54].

4.2.2. Quantum gates for the Kerr-cat qubit

Selective control of the dynamics of the Kerr-cat qubit in the
two-dimensional subspace {|C,),C,}} is possible because of the
energy gap (g, separating the qubit subspace from the rest of
the Hilbert space.

Consider a coherent microwave tone applied to the resonator at
the resonator’s resonance frequency «c. In the rotating frame, the
resulting Hamiltonian is Hy = He + &xa' + &;a. The a' term can
cause transitions outside the cat-subspace. However, these transi-
tions are off-resonant and in the limit |&| < g, leakage out of
the qubit subspace can be neglected. Similar to Eq. (21), the effec-
tive Hamiltonian in the qubit subspace is

PcH{Pc — QX — Q)Y (24)

where Pc, X are the same as those defined in Eq. (21),
Y=HC NG —HC)(C, |, Q=ale+e)(r ' +1)/2, Q= in(e;—&)
(r'-r)/2and r=v1 e 2#/\/1 e 2#. Consequently, a resonant

coherent microwave drive applied in phase with the squeezing
drive (& = &) causes Rabi-oscillations around the x-axis and hence
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Fig. 7. (Color online) Holonomic gates for the logical subspace spanned by
{IC.), IC, )} (a) Wigner function sketch of the state before (top) and after (bottom)
a loop gate acting on | — o), depicting the path of | — &) during the gate (blue) and a
shift in the fringes between. (b) Phase space diagram for the loop gate with
X=(a+a')/2 and P = —i{a —a')/2. The parameter o, (t) is varied along a closed
path (blue) of area A, and the state | — o) gains a phase 0 = 2A relative to |a). (c)
Effective Bloch sphere of the cat qubit | + ) depicting the rotation caused by the
loop gate. The black arrow depicts the initial state while the red arrow is the state
after application of the gate. The dotted blue arrow does not represent the path
traveled since the states leave the logical space during the gate. (d)-(f) Analogous
descriptions of the collision gate, which consists of reducing « to 0, driving back to
xe'?, and rotating back to c. Reprinted with permission from Ref. [37].

implements a X(0)=exp(i0X/2) operation [33-35], where 0=Q,T
with T being the evolution time. Since r—r ! ~2e 2¢ in the limit
of large «, the Rabi oscillations around y-axis is exponentially sup-
pressed with o2. The Rabi oscillations of the Kerr-cat qubit were
demonstrated in a recent experiment [54], as shown in Fig. Ge—i.
Readout of the Kerr-cat qubit can be realized by coupling the
Kerr-cat cavity to a line resonator with a beam-splitter interaction
followed by a homodyne measurement of the line resonator [54].
Furthermore, it follows from Eq. (24) that a resonant beam-
splitter interaction, generated parametrically between two driven
nonlinear resonators, leads to an Ising coupling and realizes a
XX(0) =exp(i0X1X2) gate [33-35].

The Kerr-cat qubit has an asymmetric noise channel such that Y
and Z errors are exponentially suppressed. This asymmetry illus-
trates that the qubit couples to the environment predominantly
along the x-axis, while coupling along the y and z-axis is sup-
pressed. This coupling asymmetry, also evident from Eq. (24),
results from the Hilbert-space structure of the Hamiltonian of
the driven Kerr-nonlinear resonator. Consequently, in order to
allow coupling to the z-axis, it becomes necessary to turn-off the
two-photon pump. When this pump is turned off, the cat-qubit
freely evolves under the Kerr-nonlinearity and a Z(m/2) gate is
realized after a duration 1t/2K [54,55,139]. After finishing the oper-
ation, the two-photon pump can be turned on again in order to
recover the Kerr-cat qubit. It is important to note that unlike the
X(0) and XX(0) gates, a Z(mt/2) rotation propagates a X error as a lin-
ear combination of X and Y errors and consequently destroys the
underlying asymmetric noise structure of the qubit [35].

Remarkably, recent theory shows that it is possible to realize a
two-qubit, controlled-Z (CZ) gate without turning off the two-
photon drive and thereby preserving the structure of the noise bias
(termed as CX gate in Ref. [35] due to the different bases adopted
there). The ability to implement a bias-preserving CZ gate makes
the Kerr-cat qubits desirable for efficient quantum error correction.
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Moreover, the CZ gate can be implemented with parametric drives
and four-wave mixing via the inherent Kerr-nonlinearity in the
cat-qubit mode, which is very convenient to realize as no addi-
tional coupling elements are required.

5. Holonomic quantum control

In the last section, we have shown that through Markovian
reservoir engineering, the Lindbladian dynamics can be designed
to support a mult-dimensional stabilized manifold or
decoherence-free subspace to encode the quantum information
without suffering dissipation, and it is also possible to realize uni-
versal control of the states in the stabilized manifold with the aid
of the quantum Zeno dynamics. In this section, we will show that
the universal control of the states in the stabilized manifold can be
achieved by an alternative method - holonomic quantum control.

In holonomic quantum computation (HQC) [4,140,141], the
qubit states undergo adiabatic closed-loop parallel transport in
parameter spaces, acquiring Abelian Berry phases [142] or non-
Abelian adiabatic quantum holonomies [143] to achieve noise-
resistant universal computation. Recently Albert et al. [37,132]
introduced the idea of HQC to Markovian reservoir engineering
and found that universal computation of a quantum system con-
sisting of superpositions of well-separated coherent states of single
or multiple harmonic oscillators can be achieved by three families
of adiabatic holonomic gates, including the loop gates, collision
gates for single oscillator mode and controlled-phase gates for
multiple harmonic oscillators. Below we will briefly introduce
the first two family of gates.

Consider the following Lindbladian for a single oscillator,

|

which is a generalization of Eq. (18) that supports the stabilized
manifold spanned by a set of coherent states {|og(t)),...,
|otg 1(£))}. Note that different from the constant parameters {o,}
in the last section, {a,(t)} here is time-dependent and can be tuned
as external parameters. Then by adiabatically changing {o,(f)}
through closed paths in phase space, the stable coherent states
{|oty (1))} also undergo the same adiabatic evolutions.

p=D {chﬁ(a — oty (L)) (25)

v=0

5.1. Loop gates

One type of the holonomic control is the loop gate, which can
accumulate tunable relative Berry phases over superpositions of
stabilized coherent states. First consider the simple case with
d =2 (e.g., the single-mode two-photon process), the steady state
space is {|oo(t)), |oa (£))} with aip(0) = —0ot1(0) = o (Fig. 7a). This sta-
bilized manifold holds the even-odd cat qubit {|C,).|C,)}. Suppose
that o (f) undergoes an adiabatic variation through a closed path
while oq(t) is kept constant and well separated from o (t)
(Fig. 7a,b), the state |o;(t)) will accumulate a Berry phase 0 = 2A
with A being the area enclosed by the closed path. Such an opera-
tion is called a loop gate with implemented unitary

Utoop = €'/ exp[—i6)(|at) (o] — | — ot} (~0x[)/2]

= e exp[-i0(|C, )(C, | +C,)(C,1)/2), (26)
which performs an x-axis rotation for the even-odd cat qubit
(Fig. 7c). For the general case with an arbitrary d, the loop gates con-
sist of an adiabatic evolution of «,(t) around a closed path isolated
from all the other o (t) (v # v).
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5.2. Collision gates

The other type of the holonomic control is the collision gate,
which can coherently convert the population of a stabilized coher-
ent state to another. To get the idea of collision gates, notice that
there are two distinct parameter regimes for the even-odd cat
states: o> 1 and o < 1. In the regime « > 1, the cat states |C})
are well separated and nearly orthogonal. However, in the regime
o < 1, the cat states are reduced to the Fock states with |C,) — |0)
and |C,) — |1), so a bosonic rotation R, = exp(i¢a‘a) will make the
two Fock states |0) and |1) accumulate a relative phase ¢. If we
start with the even-odd cat qubit |C,) with large o, first reduce o
to 0, then apply bosonic rotation R, and final drive back from 0
to o, the net result is that |C} ) and |C,,) accumulate a relative phase
¢ with the implemented unitary

Uell = 2 exp[—ig(|C;)(C5| — C,){C, 1)/2]

= &'/ exp[—ig(|o) (—at| + |y (—at]) /2], (27)

which performs a z-axis rotation for the even-odd cat qubit (Fig. 7f).
Denote the nonunitary driving from 0 to ae!® as S, then the colli-
sion gate can also be represented as
SoR4Sy" = Ry(R,SoR,)S," = R,S,S,". So an equivalent construction
of the collision gate is reducing o to 0, driving back to «e'® and rotat-
ing back to « (Fig. 7d, e). The generalization of the collision gate to

an arbitrary d is straightforward: start with the {|o.4,)}"_} configu-
ration with 7, = e?™/d and large enough o, tune « to zero (or close
to zero), pump back to a different phase «e'?, and rotate back to the

initial configuration. In the cat state basis with o < 1, |C4™%) — |1
will gain a phase proportional to its mean photon number [37].
Besides the adiabatic HQC approaches above, it is also possible
to implement nonadiabatic HQC based on shortcuts-to-adiabatic
(STA) dynamics [144]. Recent theory shows that in the ultrastrong
and deep-strong coupling regimes of the Rabi model [145], STA
methods can generate arbitrary nonclassical bosonic states and
induce fast nonadiabatic gates in tens of nanoseconds [146,147].

6. Multi-mode quantum control

In all the sections above, we have concentrated on the quantum
control of single bosonic mode, although sometimes we briefly
mention the extension to the multi-mode control. In this section,
we will focus on the quantum control of multiple bosonic modes,
mainly how to entangle two bosonic modes, which is a prerequi-
site for universal quantum computation. Recent experimental
advances in circuit QED to entangle cavity modes include prepara-
tion of two-mode cat state [148], two-mode W state [108] and
three-mode W state [108], on-demand state transfer and entangle-
ment generation [105,149-152], and the realization of CNOT gate
|39], controlled-Z (CZ) gate [40], exponential-SWAP (eSWAP) gate
[41] and teleported CNOT gate [47]. Below we will introduce the
eSWAP gate and teleported CNOT gate.

6.1. Exponential-SWAP gate

The eSWAP gate can coherently transfer the states between two
bosonic modes, regardless of the choice of encoding [25]. To illus-
trate the eSWAP gate, we first introduce the unitary SWAP opera-

tion S;; between any two bosonic modes a;, a;, defined as S,-jajsfj =q
and S;a;S}; = ; (the same relation for af,al). Applying the SWAP
operation twice results in Sﬁ»a,,jS}f = aj;;, which is the identity oper-
ation [y for the two bosonic modes. The eSWAP gate is defined as
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the unitary propagator induced by a Hamiltonian in the form of
the SWAP operation

U;i(0) = exp(i0Sy) = cos 0 + isindS;;, (28)
which represents a superposition of the identity and the SWAP
operation with the superposition coefficient tunable by the rotation
angle 0. At 0 = /2, /4, the eSWAP gate is reduced to the SWAP

gate and VSWAP gate, respectively. One powerful feature of the
eSWAP gate is that it can entangle two bosonic modes for any boso-
nic code. To see this, suppose the qubit code for the bosonic mode is
0./11); = fo;1(a})|0) with f,,(a]) being a function of a; and |0); the
vacuum state for the ith bosonic mode, and the initial state of the
ith and jth bosonic modes is |0;);|1,};, then applying the eSWAP gate

results in Uj(0)|0p)|1); = cos 0]0g);|11); + isind|1.),|01); (Note that

Siifo1(a;)S;; = fop(a) and 5;|0);|0); = |0);]0);).
To implement the eSWAP operations, one can first use an ancilla

qubit with states {|g),|e)} coupled to the two bosonic modes to

realize the controlled-SWAP or Fredkin gate

Gy = |g)(g| @ I + |e){e] @ §;. The Fredkin gate can be decomposed

as (Fig. 8b)

%Ea;aj—aja!?)ei% e){elala; e%[aiu;—aja}).

Ci—e (29)

where the first and last unitaries are 50:50 beam splitters and the
middle one is the controlled-phase shift (CPS) of one bosonic mode
conditioned on the ancilla state. The CPS operation can be achieved
by a dispersive coupling between the ancilla and the bosonic mode
(Eq. (1)). Then the eSWAP gate can be realized as (Fig. 8c)

Ui (0)[+) )y = CiXoGiil-H) 1)y, (30)
where |+) = (|g) + |e))/v2, X, = el &) and |y); is the wave-
function for the two bosonic modes.

Recently Gao et al. [41] have experimentally implemented the
eSWAP operations in three-dimensional (3D) circuit QED system
(Fig. 8a) and demonstrated high-quality deterministic entangle-
ment between two cavity modes with several different encodings
including the Fock- and coherent-state coding schemes. As
opposed to the eSWAP gate, a traditional CNOT gate between the
multiphoton qubits in two cavities has also be realized by the
mediation of a driven ancilla transmon, with the driving pulse
obtained from GRAPE optimal control algorithm [39]. Moreover,
a geometric method has been utilized for realizing CZ gates
between two logical qubits encoded in two cavities [40].

6.2. Teleported CNOT gate

A promising strategy toward scalable quantum computation is
to adopt a quantum modular architecture (Fig. 9a), which is a dis-
tributed network of modules that communicate with one another
through quantum and classical channels [153,154]. Each module
is composed of two functional subsystems (Fig. 9b): the data qubits
that store and process quantum information and the communica-
tion qubits that mediate interactions between different modules.
The intra-modular operations between the data and communica-
tion qubits are performed independently in each module so that
the crosstalk and residual interactions between different modules
are minimized even for a scaled-up system, while the inter-
modular operations between the data qubits are enabled by dis-
tributing entanglement between communication qubits.

Due to the isolation between different modules, the multi-qubit
operations between modules cannot depend on direct interactions
but instead utilize quantum teleported gates [28,155-157] that are
enabled by entanglement sharing, local operations and classical
communications. Consider two modules with the data qubits (D1
and D2) and communication qubits (C1 and C2), the teleported
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Fig. 8. (Color online) Design of eSWAP gate with circuit QED. (a) Schematic drawing of the three-dimensional circuit QED system used to realize the quantum Fredkin gate
and eSWAP operations between two bosonic modes Alice and Bob. (b) Decomposition of the Fredkin gate into two 50:50 beam-splitters and a controlled phase shift (CPS). The
CPS for one cavity mode is described by the unitary Ucps = g)(g| @ Ic + |e) (e| © e™'?, which can be realized through the dispersive coupling between the cavity mode and an
ancilla transmon. (¢) Quantum circuit to realize the eSWAP unitary between two bosonic modes controlled by an ancilla transmon. Reprinted with permission from Ref. [41].
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permission from Ref. [47].

CNOT gate between D1 and D2 can be implemented by the follow-
ing steps (Fig. 9c¢): (1) generation of entanglement in the commu-
nication qubits C1 and C2, (2) local operations performed within
each module entangle the data and communication qubits, (3)
measurement of C1 in the Pauli-Z basis and C2 in the Pauli-X basis
and (4) classical communication and feedforward operations.
Recently Chou et al. [47] have experimentally realized such a
teleported CNOT gate in a deterministic way in cicuit QED. The
experimental architecture consists of two modules (Fig. 9d). Each
module consists of a high-Q 3D electromagnetic cavity as the data
qubit, a transmon qubit as the communication qubit and a Purcell-
filtered, low-Q stripline resonator for readout of the transmon
qubit. The local operations on the data cavity mode in each module
were realized by the optimal control pulses obtained by GRAPE
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method (see Section 2.2). The communication channel was realized
by an additional cavity mode that functions as a quantum bus cou-
pling to both communication qubits in the two modules. With the
first-level bosonic binomial quantum code [12], the teleported
CONT gate was implemented deterministically with the process
fidelity reaching 79%.

7. Summary and outlook

Encoding quantum information in bosonic modes is a
hardware-efficient approach to quantum computation, and univer-
sal quantum control of the bosonic modes is a crucial step towards
this goal. Here we have given an extensive account of the recent
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advances in universal control of the bosonic modes. Although the
approaches in this review were initially developed in the context
of circuit QED, they can be extended to various other platforms,
such as cavity QED [65], trapped ions [97], nanophotonics [158]
and Rydberg atoms [159] in the strongly dispersive regime [101].

We have shown that universal control of a single bosonic mode
can be achieved with the aid of an ancilla qubit. The SNAP gates of
a harmonic oscillator (cavity resonator) can be implemented by
indirect control of a dispersively coupled ancilla (transmon qubit),
and the SNAP gates combined with displacement operation are suf-
ficient for universal control. We can even construct arbitrary quan-
tum channels for the oscillator by QND readout of the ancilla and
quantum feedback control. However, it is still an open problem
to find the optimal control of the qubit-oscillator system with min-
imized expenditure of energy and resources [ 160]. Another prob-
lem with this qubit-oscillator system is that the ancilla qubit
usually suffer relaxation and dephasing errors during the quantum
gates and these ancilla errors may propagate to the logical qubits
in the oscillator and corrupt the quantum information. We have
shown recent theoretical and experimental advances in this
respect, including the theoretical discovery of PI gates [31] and
experimental realization of FT parity measurement [48]| and PI
SNAP gates [49] in circuit QED.

Universal quantum control can also be achieved in some noise-
resilient subspace of the bosonic modes. With the aid of reservoir
engineering or Hamiltonian engineering, the bosonic modes may
support some multi-dimensional decoherence-free subspace to
encode quantum information. Applying appropriate drive can
implement the desired unitary on this stabilized manifold allowed
by quantum Zeno dynamics. Universal control in such stabilized
manifold can also be achieved by holonomic quantum control,
where the external parameters are tuned so that the stable states
undergo some adiabatic evolutions. Recent experimental advances
include the formation of stabilized manifold in two-photon process
|51,54], Rabi population oscillations in such a manifold [52,54] and
the formation and control of a Kerr-cat qubit [54]. However, it is
still challenging to experimentally generate desired engineered
dissipation that is much stronger than the undesired dissipations.
Moreover, it remain unsolved to systematically extract high-
order nonlinear Hamiltonian of the oscillator, in order to support
high-dimensional steady state subspaces.

Apart from universal control of single bosonic modes, coupling
different bosonic modes is also needed for universal quantum com-
putation. We have introduced two approaches to entangling two
bosonic modes with recent experimental realizations: the eSWAP
gate independent of the bosonic encoding [41] and the teleported
CNOT gate for a modular architecture [47]. It is interesting to fur-
ther design some robust generalization of eSWAP gates that are FT
to the ancilla errors and bosonic loss errors. Moreover, the tele-
ported CNOT gate has only been realized for adjacent modules,
and it will be the next milestone to demonstrate the non-local tele-
ported gates using spatially separate modules.
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