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The Quantum Approximate Optimization Algorithm (QAOA)—one of the leading algorithms for
applications on intermediate-scale quantum processors—is designed to provide approximate solu-
tions to combinatorial optimization problems with shallow quantum circuits. Here, we study QAOA
implementations with cat qubits, using coherent states with opposite amplitudes. The dominant
noise mechanism, i.e., photon losses, results in Z-biased noise with this encoding. We consider
in particular an implementation with Kerr resonators. We numerically simulate solving MaxCut
problems using QAOA with cat qubits by simulating the required gates sequence acting on the
Kerr non-linear resonators, and compare to the case of standard qubits, encoded in ideal two-level
systems, in the presence of single-photon loss. Our results show that running QAOA with cat qubits
increases the approximation ratio for random instances of MaxCut with respect to qubits encoded
into two-level systems.

I. INTRODUCTION

Variational quantum algorithms [1, 2], combining
quantum and classical computation in a hybrid approach,
occupy a central role in current research on quantum
algorithms. These algorithms are promising for imple-
mentations on NISQ devices [3], since they can in prin-
ciple run on shallow quantum processors. In particu-
lar, the Quantum Approximate Optimization Algorithm
(QAOA) [4] can be used to tackle combinatorial opti-
mization problems, which are omnipresent in logistics,
with applications within the automotive sector [5, 6], or
aviation, e.g., aircraft [7] or gate [8] assignment, financial
portfolio optimization [9], among others. First proof-of-
principle implementations of QAOA in superconducting
qubit devices were used to solve MaxCut [10, 11] and Ex-
act Cover [12, 13] problems. Although the performance
of QAOA improves at increasing algorithmic depth pro-
vided optimal parameters, current NISQ hardware is lim-
ited by noise, which decreases the performance of QAOA
after a certain algorithmic depth [11]. As such, research
into different avenues for hardware implementations of
QAOA that could allow for reaching deeper circuits is
needed.

In this work, we explore the implementation of QAOA
in bosonic systems. These have led to promising quan-
tum computing implementations in a variety of physi-
cal settings including optical [14] and microwave radia-
tion [15–17], trapped ions [18–20], opto-mechanical sys-
tems [21–23], atomic ensembles [24–27], and hybrid sys-
tems [28]. For example, in the microwave regime, bosonic
codes have successfully extended the life-time of quantum
information in superconducting cavities compared to the
system’s constituents [29–31].

∗ e-mail: vikstal@chalmers.se

So far, bosonic implementations of QAOA have pri-
marily focused on optimizing continuous functions de-
fined on real numbers [32, 33], with little attempt made
to address QAOA for solving discrete optimization prob-
lems in the context of bosonic system, which is the focus
of our work.

Encoding qubits into the coherent states of cavities
fields |±α〉, yielding cat qubits, is an emerging approach
that results in biased noise. Such type of noise affects
a quantum system in a non-uniform way, i.e., certain
types of errors are more likely to occur than others. This
has the capability of leading to favorable error-correcting
properties [34, 35], and to enhanced algorithmic perfor-
mance [36].

In a previous work [37], some of the authors have shown
that biased-noise qubits also allow for implementing error
mitigation techniques and achieving higher performance
ratios in QAOA as compared to standard qubits. How-
ever, those results where obtained for a generic noise-
biased error model, without considering specific imple-
mentations. In this work, we explore QAOA using cat
qubits, achieved in particular by means of the driven
Kerr non-linear resonator [38]. First, we simulate solving
a two-qubit Exact Cover problem under the full master
equation with cat qubits as a proof of principle demon-
stration. Second, in order to simulate larger systems of
cat qubits, we use the Pauli-transfer matrix formalism to
characterize the error channel induced by single-photon
losses on the computational subspace. We numerically
show that for an 8-qubit MaxCut problem the use of cat
qubits yields an improvement of the algorithmic approx-
imation ratio with respect to the case of qubits encoded
into discrete two-level systems, given equal average gate
fidelities between the two systems. While we are going
to focus on driven Kerr-nonlinear resonator, the imple-
mentation of QAOA on cat qubits yielding enhanced al-
gorithmic performance unveiled in our work could also
be achieved by means of other platforms, both in the
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superconducting [39], as well as photonics [40], or other
bosonic systems [41].

The paper is structured as follows. In Section II we re-
call the definition of cat qubits as well as the gates needed
to operate them. In Section III we outline how QAOA
can be run on cat qubits. We first show the principle by
considering a two-qubit toy model for solving the Exact
Cover problem, and then consider more extensive simula-
tions up to 8 qubits for solving MaxCut, in the presence
of photon losses. We then compare the performance of
QAOA with cat qubits to the one with standard qubits
given the same average gate fidelity of the two systems.
We provide our conclusive remarks in Section IV. In Ap-
pendix A we recall the definition of quantum gates acting
on cat qubits. In Appendix B we provide some details re-
garding the numerical optimization. Finally, in Appendix
C we introduce a bosonic version of QAOA by Trotter-
izing the relevant quantum annealing Hamiltonian, and
we compare its performance to QAOA for the case of a
single Ising spin.

II. CAT QUBITS AND HOW TO OPERATE ON
THEM

In this section we recall the main properties of cat
qubits implemented by means of the Kerr nonlinear res-
onator (KNR) as introduced in Refs. [42, 43], and sum-
marize how to perform gates on such a cat qubit.

A. The Kerr nonlinear resonator

In Ref. [38] a collection of microwave resonators with
Kerr non-linearities was suggested as a candidate archi-
tecture for implementing quantum annealing, with the
aim of addressing combinatorial optimization problems.
The quantum annealing sequence was designed to start
from the vacuum in all cavities, and then to slowly evolve
the quantum state towards the final state yielding the
problem’s solution, encoded in coherent states of the cav-
ities field |±α〉, with superpositions theoreof yielding cat
states. In this work, we propose to apply this simple
encoding strategy for implementing QAOA, allowing to
tackle combinatorial optimization problems with bosonic
systems.

The cat qubit can be realized in a Kerr parametric
oscillator with a two-photon pump [39, 42–44]. In a frame
rotating at the frequency of the two-photon pump and in
the rotating-wave approximation, the Hamiltonian for a
KNR is given by (we use ~ = 1 throughout this paper)

Ĥ1 = −∆â†â−Kâ†2â2 +G(â†2ei2φ + â2e−i2φ), (1)

where ∆ = ωr − 2ωp is the detuning of the resonator
frequency from twice the two-photon pump frequency, K
is the amplitude of the Kerr non-linearity, G and φ are
the amplitude and phase of the two-photon drive respec-
tively. We assume that K is a nonzero positive constant

and that ∆ is non-negative. When the detuning is zero
(i.e. when the two-photon drive frequency is half the
resonator frequency) and when the phase φ is zero, the
KNR Hamiltonian can be written as

Ĥ1 = −Kâ†2â2 +G(â†2 + â2)

= −K
(
â†2 − G

K

)(
â2 − G

K

)
+
G2

K
. (2)

Since â |α〉 = α |α〉, the coherent states |±α〉 with

α =
√
G/K are degenerate eigenstates of the Hamil-

tonian Eq. (2) with eigenenergy G2/K. The combina-
tions of these degenerate eigenstates given by |C±α 〉 =

N±(|α〉 ± |−α〉) with N± =
√

2(1± e−2|α2|) are the cat

states. They are also degenerate eigenstates, and are
even and odd parity eigenstates of the parity operator

Π̂ = eiπâ
†â respectively.

We can take advantage of this well-defined subspace
to encode our computational basis states |0̄〉, |1̄〉, defin-
ing the qubit (the bar notation is used to distinguish the
computational states from the zero and one photon Fock
state). To this aim, one possibility is to directly identify
the qubit basis states with |α〉 and |−α〉 [38]. However,

these states are quasi-orthogonal as 〈−α|α〉 = e−2α2

, and
only become orthogonal in the high photon number limit.
Another possibility consists in choosing the following en-
coding [45]:

|0̄〉 =
|C+
α 〉+ |C−α 〉√

2
, |1̄〉 =

|C+
α 〉 − |C−α 〉√

2
. (3)

In this case, the computational basis states are orthogo-
nal even for small α, while for large α they are approx-
imately equal to |0̄〉 ≈ |α〉 and |1̄〉 ≈ |−α〉. For single-
photon losses the encoding of Eq. (3) constitutes a noise
biased qubit where the loss of a single-photon results in
a phase error plus an exponentially small bit-flip error
on the computational states with respect to α. Indeed,
by defining the projection operator Î = |0̄〉〈0̄|+ |1̄〉〈1̄|, its
action on the annihilation operator â gives

Î âÎ =
α

2
(η + η−1)Ẑ + i

α

2
(η − η−1)Ŷ , (4)

where η ≡ N+/N−, and Ẑ, Ŷ are the two Pauli matri-
ces in the computational subspace. For large α, η → 1
which results in Î âÎ = αẐ, and we thus see that a single-
photon loss event corresponds to a phase-error on the
computational basis states. We will refer to the encod-
ing in Eq (3) as the cat qubit, and use it throughout the
paper. The computational basis states are shown on the
Bloch sphere in FIG. 1.

In order to run QAOA, one needs to prepare all res-
onators in state |+〉, i.e., in the case of the cat qubit,
the cat state |C+

α 〉. Such a cat state can be generated
deterministically in KNRs by starting from the vacuum,
which is an eigenstate of Hamiltonian Eq. (2) for G = 0,
and then adiabatically increasing G [43, 46]. Since the
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Hamiltonian in Eq. (2) is symmetric under parity in-
version â → −â, the KNR follows the adiabatic evolu-
tion from the vacuum while also conserving the parity,
[Π̂, Ĥ] = 0, thus ending up in the even parity cat state
|C+
α 〉. Alternatively, a cat state can also be generated us-

ing a sequence of SNAP and displacement gates applied
to the vacuum state [47].

FIG. 1. The computational states that lie along the x, y, z-
axis implemented with cat qubits and visualized on the Bloch
sphere along with their Wigner function.

B. Set of universal gates on the cat qubit

We are now interested in the implementation of gates
on the cat qubit. We are going to focus on the following
gate set:

RZ(φ) = e−iφẐ/2, (5)

RX(θ) = e−iθX̂/2, (6)

RY (ϕ) = e−iϕŶ /2, (7)

RZZ(Θ) = e−iΘẐ1Ẑ2/2, (8)

where {X̂, Ŷ , Ẑ} are the Pauli matrices in the compu-
tational basis, which in this case is taken to be the cat
qubit Eq. (3). Note that this is an over-complete gate set,
as any pair of single-qubit gates {RX(θ), RY (ϕ), RZ(φ)}
together with RZZ(Θ) allow for implementing arbitrary
qubit operations. The gates are implemented according
to Refs. [42, 43], where the RZ(φ)-gate is implemented
in KNRs by means of a single-photon drive. The RX(θ)-
gate is implemented through a time-dependent detuning

∆. The RY (ϕ)-gate is implemented by means of single
and two-photon drives, and RZZ(Θ)-gate is implemented
through a beam-splitter interaction between two KNRs.
We provide a more detailed description of these gates in
Appendix A, where we also present numerical simulations
validating this approach for relevant parameter regimes
and in the pressence of noise induced by single-photon
loss. In TABLE I we report the average gate fidelities,
without single-photon loss and with single-photon loss
rate of K/1500 respectively.

TABLE I. Average gate fidelities for the considered gates
within KNR-encoding obtained through master equation sim-
ulation. The results are averaged over 20 points evenly spaced
between 0 and π. The single-photon loss rate was set to
K/1500.

Gate
Avg. gate fid. (%)

with no loss
Avg. gate fid. (%)

with single-photon loss

RZ(φ) > 99.99 99.64
RX(θ) > 99.99 98.59
RY (ϕ) 99.52 98.72
RZZ(Θ) > 99.99 99.15

III. QAOA WITH CAT QUBITS

In this section, we use the gate set defined in Sec-
tion II B to implement the QAOA sequence on cat qubits.
We start by briefly reviewing QAOA, and we then ad-
dress numerical simulations of increasing complexity (two
to eight qubits), in the presence of single-photon losses,
assessing the algorithmic performance in terms of the suc-
cess probability and the approximation ratio.

A. The QAOA algorithm

QAOA [4] starts from the superposition of all possible

computational basis states, |+〉⊗n, where n is the num-
ber of qubits. Then the alternating sequence of the two
parametrized non-commuting quantum gates Û(γ) and

V̂ (β) is applied p times, with

Û(γ) ≡ e−iγĤC , V̂ (β) ≡ e−iβĤM , (9)

where ĤM ≡
∑n
i=1 X̂i is the mixing Hamiltonian, and

ĤC is the cost Hamiltonian that encodes the solution to
the considered optimization problem in its ground state,

ĤC =
∑
i<j

JijẐiẐj +
∑
i

hiẐi. (10)

Indicating the collection of variational parameters as ~γ =
(γ1, . . . , γp) with γi ∈ [0, 2π) if ĤC has integer-valued
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eigenvalues, and ~β = (β1, . . . , βp) with βi ∈ [0, π), the
final variational state is

|ψp(~γ, ~β)〉 ≡ V̂ (βp)Û(γp) . . . V̂ (β1)Û(γ1) |+〉⊗n . (11)

The parametrized quantum gates are then optimized in a
closed loop using a classical optimizer with the objective
of minimizing the expectation value of the cost Hamilto-
nian

(~γ∗, ~β∗) = arg min
~γ,~β
〈ψp(~γ, ~β)|ĤC |ψp(~γ, ~β)〉 . (12)

Once the optimal variational parameters are found one

samples from the state |ψp(~γ∗, ~β∗)〉 by measuring it in
the computational basis, the eigenvalue of the cost Hamil-
tonian Eq. (10) corresponding to the measured configu-
ration, is evaluated. The success probability is defined
as the probability of finding the qubits in the ground
state configuration when performing a single shot mea-

surement of the |ψp(~γ, ~β)〉 state, i.e.

Fp(~γ, ~β) ≡
∑
zi∈~zsol

| 〈zi|ψp(~γ, ~β)〉 |2, (13)

where zi is a bit-string of length n, and ~zsol is the set of
all bit string solutions.

It is clear that QAOA can be run on cat qubits and
compiled using the gates discussed in Section II B. The

unitary e−iβĤM can easily be implemented as single qubit
RX(2β)-gates on each individual qubit, and the cost

Hamiltonian ĤC can be implemented as a product of
RZ(2γhi)-gates and RZZ(2γJij)-gates [48].

B. Solving a toy problem with QAOA on cat qubits

In order to test the capability of cat qubits for solving
combinatorial optimization problems using QAOA given
relevant gate fidelities for the set of operations consid-
ered, we run a master equation simulation of a two-qubit
Exact Cover problem on cat qubits.

Exact Cover is a NP-complete problem [49, 50] that
appears in logistics, and notably as a part of the Tail
Assignment problem [7]. The Exact Cover is formulated
as follows: given a set U = {c1, c2, . . . , cn}, and a set of
subsets V = {V1, . . . , Vm} with Vi ⊂ U such that

U =

m⋃
i=1

Vi, (14)

the goal is to decide if there exist a subset of the set
of sets {Vi}, called R, such that the elements of R are
disjoint sets i.e. Vi ∩ Vj = ∅ for i 6= j, and the union of
element of R is U .

For two qubits, the simulation of the circuit with the
action of the gates can be carried out by solving the Lind-
blad master equation for the Kerr resonators. Therefore,

|+⟩
RZZ(γ)

RZ(γ) RX(2β)

|+⟩ RX(2β)

FIG. 2. The circuit diagram of QAOA with depth p = 1
for solving a two-qubit instance of the Exact Cover problem,
using the universal gate set introduced in Eq. (5)-(8). Here,

the circuit is shown using the X̂-mixer.

we start by simulating Exact Cover for the same toy in-
stance that was considered in Ref. [12], i.e. U = {c1, c2}
and V = {V1, V2}, with V1 = {c1, c2} and V2 = {c2}.
This has solution |1̄0̄〉, corresponding to choosing subset
V1. The mapping onto the cost Hamiltonian Eq. (10)
gives us the values h1 = 1/2, h2 = 0 and J12 = 1/2 [7].
Therefore, the quantum circuit for implementing QAOA
with p = 1 takes the form of the one in FIG. 2. We
extend our analysis of the original QAOA proposal, and
allow for different input states, namely |+〉 and |+i〉, and

mixing Hamiltonians ĤM . Specifically we do simulations
for both X̂ and Ŷ -mixer, which corresponds to replacing
the RX(θ)-gate with a RY (θ)-gate in FIG. 2. FIG. 3 illus-
trates the amplitude of the pulse schedule for p = 1 with
the X̂ and Ŷ mixer respectively for the gates introduced
in Section II B. We simulate QAOA implemented with
cat qubits using the numerically best found variational

parameters (~γ, ~β) for the ideal, no losses case, up to p = 2.
The reason for using the variational parameters for the
ideal case is that several results have shown that the op-
timal variational parameters are robust to noise [51, 52],
and because it is computational exhaustive to perform an
extensive global optimization simulation of the system.

The results are summarized in TABLE II. First of all,
we observe that as a general result (independent on the
cat qubit implementation), if the initial state is not an
eigenstate of the mixer Hamiltonian, 100% success prob-
ability is achieved already for p = 1. If instead the initial
state is an eigenstate of the mixer, p = 2 is needed to
reach 100% success probability. A similar behavior was
observed for the MaxCut problem in Ref. [53], where it
was shown that by designing the mixer Hamiltonian to
allow for rotations around the XY -axis lead to a perfor-
mance increase. In the absence of single-photon losses,
these success probabilities are well reproduced when sim-
ulating QAOA on cat qubits. Deviations from the ideal
case still arise, due to the imperfect average gate fideli-
ties of the gates used to implement the sequence, as per
Section II B. In the presence of single-photon losses, the
performances of the RX(θ) and RY (θ) mixers are almost
the same.



5

0 5 10
Time (1/K)

0.0

0.5

1.0

1.5

2.0

2.5

Am
pl

itu
de

 (K
)

Z0
X0
X1
Z0Z1

0.0 2.5 5.0 7.5
Time (1/K)

0.0

0.5

1.0

1.5

2.0

Am
pl

itu
de

 (K
) Z0

Y0
G0
Y1
G1
Z0Z1

FIG. 3. QAOA depth p = 1 pulse schedule and shape (a)
with X-mixer, (b) with Y -mixer. Each label corresponds to a
Hamiltonian, for example Z0 corresponds to the amplitude in
units of the Kerr non-linearity of the Hamiltonian that imple-
ments the RZ-gate on the zero-th cat qubit. Furthermore, the
G-label in (b) corresponds to the amplitude of the two-photon
drive, where the unit amplitude corresponds to a net two-
photon drive of zero amplitude and the two unit amplitude
corresponds to two-photon driving along the P -quadrature.
This is because, in the simulations, the two-photon drive is
always on. This is not shown in the figure, just as the always
present self-Kerr. Therefore, to turn off the always present
two-photon drive an additional two-photon drive Hamiltonian
is turned on, but with an opposite amplitude. A more detailed
description of how the gates are implemented can be found in
Appendix A.

TABLE II. Performance of QAOA for solving a toy two-qubit
instance of Exact Cover on cat qubits for different mixers
and initial states. The percentages correspond to the suc-
cess probability given by Eq. (13), using the numerically best
found angles. The noisy case corresponds to a single-photon
loss rate of K/1500. The simulation results were obtained by
solving the Schrödinger equation for the no losses case, and
the Lindblad master equation for the noisy case.

p Input Mixer
Ideal

QAOA (%)
Cat qb. with
no losses (%)

Cat qb. with
losses (%)

1 |+〉 X 50 50.0 49.0
2 |+〉 X 100 99.9 90.6
1 |+i〉 X 100 99.9 96.4
1 |+i〉 Y 50 49.9 48.4
2 |+i〉 Y 100 99.9 91.3
1 |+〉 Y 100 99.9 95.8

C. Numerical results for larger systems: Pauli
transfer matrix formalism

We now move forward to more complex simulations.
In this section, we numerically simulate solving 8-qubit
MaxCut problems using QAOA with cat qubits and com-
pare it to the case of standard qubits, encoded in ideal
two-level systems, in the presence of single-photon loss
for both systems. The MaxCut problem is a NP-complete
problem that has been extensively studied in the context
of QAOA [11, 54, 55]. The objective of MaxCut is to
partition the set of vertices of a graph into two subsets,
such that the sum of the edge weights going from one
partition to the other is maximum. MaxCut can be for-
mulated as follows: Given a graph G = (V,E), where
V is the set of vertices, and E is the set of edges, the
MaxCut Hamiltonian is

ĤC =
1

2

∑
i,j∈E

(1− ẐiẐj), (15)

where the sum is over all edges.
Since the total Hilbert space dimension increases expo-

nentially with the number of KNRs — The Hilbert space
for each KNR is of course infinite but in the simulation we
truncate it to 20 levels for each resonator — simulating
more than 2 to 3 KNRs quickly becomes computation-
ally difficult. A different strategy is to perform quantum
gate set tomography by using the Pauli transfer matrix
(PTM) formalism. This allow us to map the quantum
process of each individual gate to effective two-level sys-
tems and hence simulate it using the Kraus-operator for-
malism instead of the Lindblad master equation, which
is a lot more computationally efficient.

For a quantum channel E(ρ) the PTM is formally de-
fined as [56]

(RE)ij ≡
1

d
Tr
[
P̂iE(P̂j)

]
, (16)

where P̂j ∈ {Î , X̂, Ŷ , Ẑ}⊗n is the Pauli group in the com-
putational basis for n-qubits, and d = 2n is the Hilbert
space dimension. Furthermore, the PTM formalism al-
lows for composite maps to be written as a matrix prod-
uct of the individual PTMs, i.e. E2 ◦E1 = RE2RE1 . Using
this fact we can deconstruct the PTM as a product of two
parts: an ideal part Rideal, corresponding to the noise-
less ideal gate, and a noise part Rnoise, corresponding
to both coherent errors as a result of imprecise unitary
operation, and incoherent errors stemming from single-
photon losses. Since the ideal gate operation is known,
it is possible to extract the erroneous part from the full
quantum process as follows:

RE = RnoiseRideal ⇒ Rnoise = RER
−1
ideal. (17)

We now use the aforementioned procedure in order to
transform the continuous time evolution of the KNR
gates to PTMs. Since the QAOA implementation of
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MaxCut only requires RX(θ) and RZZ(Θ)-gates we will
only focus on these two gates, starting with the for-
mer. Because the RX(θ)-gate is not noise bias preserv-
ing, meaning that single-photon losses does not commute
through the gate, the noise part Rnoise will ultimately de-
pend on the angle θ. We therefore compute Rnoise for 180
evenly spaced points between 0 and π for the RX(θ)-gate,
and use the closest Rnoise for a given θ in upcoming sim-
ulations. Hence, we do not need to compute RE for every
possible angle. For the RZZ(Θ)-gate, however, we only
compute the PTM for Θ = 0, since this gate is noise bias
preserving, because a single-photon loss corresponds to a
Ẑ error in the computational subspace, and Rnoise is thus
independent on the angle Θ. For the MaxCut problem,
the RZ(φ)-gate is not needed for the circuit compilation,
and we therefore exclude it.

Once the PTMs have been obtained, we transform
them to Kraus operators, in order to easily simulate the
circuit using Cirq [57] as

ρ̂→
m∑
k=1

Âk(Û ρ̂Û†)Â†k, (18)

where Û corresponds to the ideal gate and Âk is the set
of Kraus operators that describe the noise. Transform-
ing the PTM to Kraus operators can be done by first
transforming the PTM to the Choi-representation and
then transform the Choi-representation to the Kraus-
representation. To begin, the PTM for a n-qubit channel
can be transformed to a Choi-matrix according to [56]

ρ̂E =
1

d2

d2∑
i,j=1

(RE)ijP̂
T
j ⊗ P̂i. (19)

Given the Choi-matrix, the Kraus-representation is ob-
tained by first diagonalizing the Choi-matrix, from which
its eigenvalues {λi} and eigenvectors {|Âi〉〉}, where |·〉〉
is a superoperator. The eigenvalues and eigenvector
are then used to construct the Kraus operators as fol-
lows [58]:

Âi =
√
λiunvec(|Âi〉〉), (20)

where unvec is the unvectorization operation.
In order to make a fair comparison between the perfor-

mance of the cat qubit and the one of the standard qubit,
we chose the relevant parameter such that the average
gate fidelities are the same between the two systems. By
doing so, we can compare which encoding, continuous
versus discrete, is the best for QAOA. For the standard
qubit device, we implement the RX(θ)-gate by evolving

under the Pauli X̂, and the RZZ(Θ)-gate by evolving

under ẐiẐj . The gate time Tg is chosen to be the same
as was used for the cat qubit device, i.e. Tg = 10/K
where K is the Kerr non-linearity for the RX(θ)-gate and
Tg = 2/K for the RZZ(Θ)-gate. We specifically pick the
relaxation rates T1 with the pure dephasing rate Tφ set

TABLE III. Average gate fidelities for the RZZ(Θ) and
RX(θ)-gate for cat qubits and standard qubits obtained using
the Kraus operator formalism. The results are averaged over
20 points evenly spaced between 0 and π.

Avg. gate fid. (%) RZZ(Θ) RX(θ)

Cat qubits 99.16 98.60
Standard qubits 99.16 98.62

to zero, such that the average gate fidelity corresponds to
that of the KNR-gates. To this aim we use an expression
for the first-order reduction in the average gate fidelity
due to relaxation rate [59]

F̄ = 1− d

2(d+ 1)
TgnΓ1, (21)

where F̄ is the average gate-fidelity, d = 2n, and Γ1 =
1/T1 is the relaxation rate where T1 is the relaxation time
which we assume to be the same for all n qubits. The
expression can be re-written to give the relaxation rate
in terms of the average gate-fidelity

Γ1 = 2
(d+ 1)(1− F̄ )

dTgn
. (22)

Using the average gate-fidelities F̄ that were numerically
calculated for the cat qubits in TABLE I, the correspond-
ing relaxation rates for the standard qubits that results
in the same average gate fidelity as for the cat qubits can
be obtained.

Likewise, we do quantum gate set tomography using
the PTM formalism for the standard qubit device, and
since neither the RX(θ) nor the RZZ(Θ)-gate are noise
bias preserving in this case, we compute Rnoise for 180
evenly spaced points of θ and Θ between 0 and π for each
of the two gates respectively. In TABLE III we report
the average gate fidelity for the RZZ(Θ) and RX(θ)-gate
using the Kraus operator formalism for both cat qubits
and the standard qubits after setting the relaxation time
T1 found for the standard qubits. From TABLE III the
average gate fidelities matches very well between the cat
and standard qubits, with the RX(θ)-gate being 0.02%
higher for the standard qubits, which we attribute to the
fact that Eq. (21) is only a first order approximation of
the average gate fidelity. Using the Kraus-operator for-
malism, we are able to simulate QAOA with cat qubits
and standard qubits for solving 30 randomly generated 8-
qubit instances of MaxCut on Erdős–Rényi graphs with
edge probability p = 0.5. As a metric for comparison be-
tween the performance of cat qubits and standard qubits
we look at the approximation-ratio, defined as

r ≡
Tr
(
ρ̂ĤC

)
Cmax

, (23)

where the numerator is the expected cut value with ρ̂
the density matrix output from QAOA, and Cmax is the
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value of the maximum cut. The simulation results are
presented in FIG. 4. For both cases, the approximation
ratio first increases at increasing p, and then starts de-
creasing when p is sufficiently high so that the noise in
the gates for implementing the QAOA sequence makes it
less advantageous to use large depth circuits. The results
show that given the same average gate fidelities, the ap-
proximation ratio obtained for the KNR device is higher
than for the standard qubit device for all iteration lev-
els p, thereby indicating an advantage in the use of the
former qubit implementation over the latter. For the
case of standard qubits, the highest approximation ra-
tio is achieved for p = 3 while for cat qubits the highest
approximation ratio is achieved for p = 4. The numeri-
cal method used to achieve the classical optimization of
the various QAOA instances is described in Appendix B,
where we also report on the simulation results for the ap-
proximation ratios corresponding to the ideal case, the
use of cat qubits, and of standard qubits respectively,
without averaging over the random instances.

We note that the approximation ratio for both stan-
dard and cat qubits could be further improved by resort-
ing to error mitigation techniques for estimating expecta-
tion values, such as, for instance, virtual distillation [60–
62] which has been shown to be robust against dephasing
noise for QAOA [37]. Finally, one might wonder whether
a better performance in terms of the approximation ratio
could be obtained by defining a genuinely bosonic variant
of the QAOA algorithm, i.e. by Trotterizing an appropri-
ate bosonic quantum annealing Hamiltonian [38], which
initial optimal eigenstate is the vacuum, and which final
optimal eigenstate encodes the solution. We explore this
question in Appendix C, where our numerical simulation
suggest that such a bosonic QAOA algorithm does not
yield an improvement over QAOA on cat qubits. We hy-
pothesize that this missed efficiency stems from the need
for bosonic QAOA to bring the state of the system of
resonators into the qubit computational basis.

IV. CONCLUSIONS

In conclusion, we have studied implementations of
QAOA with a noise biased qubit, namely the cat qubit,
and we have performed numerical simulations in the case
that such a cat qubit is implemented by means of a Kerr
nonlinear resonator. Despite the algorithmic sequence re-
quires non-bias preserving X-rotations, running QAOA
on such cat qubits yields a performance advantage with
respect to the use of standard qubits in the presence of
noise caused by single-photon losses for the studied prob-
lem, MaxCut. We expect these results not to be depen-
dent on the problem chosen, and that other problems
than MaxCut would benefit from the same performance
separation.

Our results indicate that noise biased qubits that fa-
vor dephasing errors, such as cat qubits, are preferable
over standard qubits for the implementation of QAOA
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Cat qubits
Standard qubits
Ideal QC

FIG. 4. Mean approximation ratio averaged over 30 instances
of 8-qubit MaxCut graphs. The circle corresponds to the
approximation ratio of an ideal (noise free) quantum com-
puter. The square is the approximation ratio obtained using
cat qubits and the triangle is with standard qubits encoded
into discrete two-level systems. The average gate fidelity was
chosen to be close to identical for the cat qubits and standard
qubits with values reported in Appendix A.

on near-term intermediate-scale quantum processors, and
provide a concrete estimate of the obtainable approxima-
tion ratio for MaxCut, for an implementation based on
Kerr resonators with realistic noise parameters.

An interesting question that stems from our work is
how the results here presented, and in particular the per-
formance of QAOA, would change in the case where one
would adopt a similar encoding of cat qubits in Kerr res-
onators, but with a more sophisticated use of the detun-
ing as was recently introduced in Ref. [63], or with the
alternative definition of gates considered in the dissipa-
tive scenario of Ref. [64]. We leave these analysis for
future work.
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Appendix A: Quantum gates on cat qubits

In this Appendix, we will go through the implementa-
tion of a universal gate set for the cat qubits implemented
in a Kerr nonlinear resonator. All gates will be evaluated
in terms of their average gate fidelity. The average gate
fidelity of a quantum channel E for a qudit of dimension
d is defined as [69]

F̄ (E , Û) =

∑
j Tr

(
Û P̂ †j Û

†E(P̂j)
)

+ d2

d2(d+ 1)
, (A1)

where Û is the target gate and the sum is over the ba-
sis of unitary operators P̂j for the qudit, with P̂j sat-

isfying Tr
(
P̂ †j P̂k

)
= δjkd. In the simulations we set

d = 2 for single-qubit gates and d = 4 for two-qubit
gates, and P̂j is chosen to be one of the Pauli matrices in

the computational-basis, e.g P̂j ∈ {Î , X̂, Ŷ , Ẑ}⊗n, where
n is the number of cat qubits. Moreover, we set G = 4K
so that α = 2 in all subsequent simulations.

1. RZ(φ)-gate

The RZ(φ) gate can be performed by applying a single-
photon drive with an amplitude of E(t) to the KNR. The
Hamiltonian for this drive is given by:

ĤZ(t) = E(t)(âe−iθ + â†eiθ), (A2)

where θ is the phase of the drive. When θ = 0, and
|E(t)| � 4G and the variation of E(t) is sufficiently slow,
the cat qubit is approximately kept in the computational
basis [42, 70]. Applying the projector onto the compu-

tational subspace Î = |0̄〉〈0̄| + |1̄〉〈1̄| to the single-photon
drive Hamiltonian Eq. (A2) gives for large α

ÎE(t)(â† + â)Î = 2E(t)αẐ. (A3)

We perform numerical simulations where we set ∆ = 0
and define E(t) as

E(t) =
πφ

8Tgα
sin

πt

Tg
, (A4)

with Tg = 2/K, and φ is the angle for the gate. In FIG. 5
the average gate infidelity (1− F̄ ) as a function of φ for
the RZ(φ)-gate is shown: in (a) without losses, and in
(b) with a single-photon loss rate of K/1500.

2. RX(θ)-gate

An RX(θ)-gate can be realized by means of a small
non-zero detuning ∆ between the two-photon drive and
the resonator. This can be understood by projecting the
number operator in the computational basis:

Î â†âÎ = |α|2Î − |α|2e−2|α|2X̂.

0 π/2 π
φ

0

2

4

1
−
F̄

×10−5
(a)

0 π/2 π
φ

3.52

3.54

3.56

×10−3
(b)

FIG. 5. The average gate infidelity (1 − F̄ ) of the RZ(φ)-
gate(a) without noise and (b) with a single-photon loss rate
of K/1500.

If ∆(t) � 2G the computational states |0̄〉 and |1̄〉 are
approximately kept in the computational subspace. Thus
choosing ∆(t) as

∆(t) =
θπ

4Tg|α|2e−2|α|2 sin
πt

Tg
(A5)

yields

e−i[−â
†â

∫ Tg
0 ∆(t)dt] = e−i

θ
2 X̂ , (A6)

corresponding to a RX(θ)-gate. The disadvantage of this
approach, however, is that the gate time Tg has to be
exponentially large with respect to α in order to satisfy
the condition ∆(t) � 2G. For example, if α = 2, then
a total gate time Tg > 1000/K is required. However, a
second proposal was put forward by Goto [42], where the
detuning is set to a fixed value ∆0, and the corresponding
θ that maximizes the average gate fidelity is evaluated.
Hence, to perform the RX(θ)-gate, ∆(t) is set to

∆(t) = ∆0 sin2 πt

Tg
, (A7)

with Tg = 10/K. Throughout this paper, we use this sec-
ond method. We find the θ that maximizes the average
gate fidelity for 20 values of ∆0 between 0 and 3.95K,
see FIG. 6a. It can be seen that while ∆0 changes from
0 to 3.95K, the rotation angle θ changes from 0 to π. In
FIG. 6 (b) and (c) the average gate infidelity (1 − F̄ )
as a function of θ for the RX(θ)-gate is shown: in (b)
without losses, and in (c) with a single-photon loss rate
of K/1500.

3. RY (ϕ)-gate

To perform the RY (ϕ)-gate, the two-photon drive is
turned off for a total time t = π/2K to let the state evolve
freely under the Kerr Hamiltonian. If the initial state
is the vacuum state |0〉vac, it will evolve into ( |C+

iα〉 +



9

0 2 4
∆0/K

0

π/2

π
θ

(a)

0 π/2 π
θ

0.0

2.5

5.0

1
−
F̄

×10−4(b)

0 π/2 π
θ

1.4

1.6

1
−
F̄

×10−2(c)

FIG. 6. (a) θ maximizing the average gate fidelity 1− F̄ as a
function of ∆0. (b) Average gate infidelity without noise and
(c) with single-photon loss rate of K/1500.

i |C−−iα〉)/
√

2. Once the state is along the imaginary axis
the two-photon drive is turned on, with a π/2 phase,
so that the state is stabilized along the imaginary-axis.
Applying the single-photon drive also with a π/2 phase,

such that ĤZ(t) = E(t)(â†eiπ/2 + âe−iπ/2), where E(t) is
given by Eq. (A4), the two cat states will acquire a phase
difference. When the two-photon drive is turned off for
a second time, that is t = π/2K, the resulting gate is
RY (ϕ), see FIG. 7. In FIG. 8 the average gate infidelity
(1 − F̄ ) as a function of ϕ for the RY (ϕ)-gate is shown
in (a) without losses, and with a single-photon loss rate
of K/1500 in (b).

4. RZZ(Θ)-gate

The two-qubit Ising-zz gate RZZ(Θ) is achieved by
means of two-photon exchange between two KNRs, yield-
ing the coupling Hamiltonian

ĤZZ = g(t)(â1â
†
2 + â†1â2). (A8)

When |g(t)| � 2G, the KNRs are approximately kept in
the subspace spanned by |0̄0̄〉, |0̄1̄〉, |1̄0̄〉 and |1̄1̄〉. Pro-
jection of Eq. (A8) onto the computational basis yields
for large α

ĤZZ = 2α2g(t)Ẑ1Ẑ2 + const. (A9)

In our numerical simulation we set Tg = 2/K, and to
perform RZZ(Θ), we set g(t) as

g(t) =
πΘ

8Tgα2
sin

πt

Tg
. (A10)

In FIG. 9 the average gate infidelity (1− F̄ ) as a function
of Θ for the RZZ(Θ)-gate is shown: in (a) without losses,
and in (b) with a single-photon loss rate of K/1500.

Appendix B: Numerical optimization and
approximation ratios

In this section we elaborate on the classical optimiza-
tion part of QAOA that was used in Section III C. For
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FIG. 7. (a)-(d) Wigner function at four different stages of
the RY (π/2)-gate starting from the |0̄〉 state. Between (a)-
(b) the two-photon drive is turned off to let the state evolve
freely under the Kerr Hamiltonian. When a time t = π/2K
has passed, the two-photon drive is turned on again but this
time with a π/2 phase such that the state is stabilized along
the imaginary axis in the phase space. Between (b)-(c) a
single-photon drive with a π/2 is applied to the cat-state for
a time t = 2π/K. This makes the superposition of the two
coherent states acquire a phase difference depending on the
angle ϕ. Finally, between (c)-(d) the two-photon drive is
turned off once more for a time t = π/2K to let the state
evolve back an be stabilized along the real axis.
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FIG. 8. The average gate infidelity 1 − F̄ of the RY (ϕ)-gate
(a) without noise and (b) with single-photon loss rate of
K/1500.

p = 1, brute force optimization is used where the the
cost function 〈ψ1(γ, β)|ĤC |ψ1(γ, β)〉 is evaluated on a
100 × 100 grid. For p > 1, we use the interpolation
method, described in Ref. [71], together with a local opti-
mizer. This strategy consists in predicting a good start-
ing point for the variational parameters search at level
p+ 1 for each individual instance based on the best vari-
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FIG. 9. The average gate infidelity 1 − F̄ of the RZZ(Θ)-
gate (a) without noise and (b) with single-photon loss rate
of K/1500.

ational parameters found at level p for the same instance.
From the produced starting point we run a L-BFGS op-
timizer. FIG. 10 shows the approximation ratio for each
instances for noiseless, ideal QAOA as a function of the
level p. As can be seen from the figure the approxima-
tion ratio increases at increasing QAOA level for each
individual instance, indicating the success of the classi-
cal optimizer at finding good variational parameters.
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FIG. 10. The approximation ratio as a function of the QAOA
level p plotted for each individual instance in the ideal case,
meaning no noise. There are 30 instances in total.

Appendix C: Bosonic QAOA

In this Appendix we eplore the possibility of deriv-
ing a genuinely bosonic version of the QAOA algo-
rithm from Trotterizing a bosonic quantum annealing
Hamiltonian, in analogy as what initially done for qubit
QAOA in Ref. [4]. We refer to this new algorithm as
Bosonic QAOA. We compare numerically its performace
to QAOA on cat qubits, for the simple case of fiding the
ground state of a single Ising spin.

1. Trotterization of the CV Quantum Annealing
Hamiltonian

The time evolution of the quantum annealing algo-
rithm starts from the ground state of a Hamiltonian that
is easy to prepare and slowly evolves the system into the
ground state of a Hamiltonian encoding the solution to
a combinatorial optimization problem. If the evolution
is slow enough, as set by the quantum adiabatic theo-
rem, the initial state will follow the instantaneous ground
state throughout the evolution and end up in the solution
state. The algorithm also works if the initial state is the
highest energy eigenstate, or “roof” state, of the initial
Hamiltonian, provided the final Hamiltonian encodes the
solution in its highest energy eigenstate.

The starting point for deriving a bosonic QAOA algo-
rithm is the quantum annealing Hamiltonian

Ĥ(t) =

(
1− t

τ

)
ĤM +

t

τ
ĤC , (C1)

where ĤM is the initial Hamiltonian, whose ground state
is easy to prepare, and ĤC is the final Hamiltonian,
whose ground state encodes the solution to an optimiza-
tion problem. We take inspiration by the annealing pro-
tocol using Kerr resonators of Ref. [38]. For n resonators,
we can choose

ĤM =

n∑
i=1

(−∆â†i âi −Kâ†2i â2
i ), (C2)

which has the vacuum state |0〉vac as its “roof state”, and

ĤC =

n∑
i=1

[
−Kâ†2i â2

i +G
(
â†2i + â2

i

)
+ Ei

(
â†i + âi

)]
+

∑
1≤i<j≤n

gij

(
â†i âj + â†j âi

)
. (C3)

By starting from the vacuum state and slowly increas-
ing t, the instantaneous eigenstate of the Hamiltonian
Eq. (C1) evolves into the highest energy eigenstate of ĤC

which encodes the solution to an optimization problem
upon cat qubit encoding [38].

We will now in the spirit of Farhi et al. [4] Trot-
terize the bosonic quantum annealing Hamiltonian
Eq. (C1) to obtain a genuinely bosonic version of QAOA.
The continuous-time evolution governed by the time-
dependent Hamiltonian of Eq. (C1) is given by

Û(T ) ≡ T exp

[
−i
∫ T

0

Ĥ(t)dt

]

≈
p∏
k=1

exp
[
−iĤ(kδt)δt

]
, (C4)

where Û(T ) is the evolution operator from 0 to T , T is
the time-ordering operator, and p is a large integer so
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that δt = T/p is a small time interval. Since ĤM and

ĤC are two non-commuting Hamiltonians, one can use
the Trotter formula:

ei(A+B)δt = eiAδteiBδt +O(δt2), (C5)

for two non-commuting operators A and B given suf-
ficiently small δt, and apply it to the discretized time
evolution operator Eq. (C4), yielding

Û(T ) ≈
p∏
k=1

exp

[
−i
(

1− kδt

τ

)
ĤMδt

]
× exp

[
−ikδt

τ
ĤCδt

]
. (C6)

We have so far approximated the continuous-time evolu-
tion by a sequential product of discrete time steps. We
can now apply the same idea underlying the QAOA algo-
rithm in Ref. [4], which consists in truncating this prod-
uct to an arbitrary positive integer p and redefining the
time dependence in each exponent in terms of variational
parameters (1− kδt/τ)δt → βk and (kδt/τ)δt → γk,
leading to

Ûp =

p∏
k=1

exp
[
−iβkĤM

]
exp
[
−iγkĤC

]
. (C7)

We then define our bosonic QAOA algorithm as the se-
quence in Eq. (C7), with ĤM and ĤC given by Eq. (C2)
and (C3) respectively, applied to vacuum state chosen as
the initial state.

It is interesting to compare the bosonic QAOA algo-
rithm that we derived to the standard QAOA from Sec-
tion III, when the latter is implemented on cat qubits.

In TABLE IV we compare the mixing Hamiltonian,
cost Hamiltonian and initial states of bosonic QAOA and
QAOA. Clearly, the cost Hamiltonian encoding the prob-
lem solution is the same for the two algorithms. Instead,
the two-photon drive is not present in the mixer Hamil-
tonian for bosonic QAOA. The most notable difference is
that while the input state for QAOA on cat qubits is the
state |+〉 in all qubits, corresponding to initializing all
qubits into a cat state |C+

α 〉, the input state for bosonic
QAOA is the vacuum state.

2. Finding the ground state of a single Ising spin

To test the performance of bosonic QAOA we consider
the simplest problem possible — finding the ground state
of a single Ising spin in a magnetic field. The cost Hamil-
tonian for the single Ising spin in a magnetic field is

ĤC = −Kâ†2â2 +G(â†2 + â2) + E(â† + â). (C8)

In the simulations we begin from the vacuum and we set

∆ = K/(|α|2e−2|α|2) and E = K/(2α). The cost Hamil-

tonian in the computational-basis is ĤC = Ẑ, whose
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−0.25 0.00 0.25 −0.5 0.0 0.5

FIG. 11. (a) Expectation value landscape of the single-Ising
spin for depth p = 1 in bosonic QAOA. (b) Expectation
value landscape of the single-Ising spin for p = 1 for stan-
dard QAOA.

ground state is |1̄〉. From the numerical simulations we
obtain a fidelity of 0.52 for p = 1 and of 0.785 for p = 2.
In both cases these results were obtained by evaluation
of the expectation value of the cost Hamiltonian on a
(100× 100)p-grid.

The low fidelity finds an interpretation in terms of the
expectation value landscape for p = 1, given in FIG. 11a.
We see that the landscape is very heavily oscillating,
hindering optimization. This should also be compared
with the same expectation value landscape of QAOA for
qubits which appears instead dramatically smoother, see
FIG. 11b. The fidelity is moreover equal to 1 for the
p = 1 qubits.

A possible interpretation of this difference in the per-
formance of bosonic QAOA and QAOA resides in the
fact that bosonic QAOA starts from the vacuum. Hence,
first iterations of the algorithm are needed just to bring
the system onto the qubit computational subspace. In
contrast, QAOA implemented with qubits (possibly cat
qubits) starts already in the computational subspace.
The difficulty of preparing the initial cat state is how-
ever somehow hidden in this comparison. Hence in the
next subsection we address the preparation of a cat state
with bosonic QAOA.

3. Creating a cat state from vacuum using bosonic
QAOA

Here we investigate the possibility of creating a cat
state by starting from the vacuum state and by applying
bosonic QAOA. The state evolution is

Ûp |0〉vac =

p∏
k=1

exp
[
−iβkĤ0

]
exp
[
−iγkĤ1

]
|0〉vac (C9)

where the two Hamiltonians are given by

Ĥ0 = −∆â†â−Kâ†2â2, (C10)
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TABLE IV. Comparison between bosonic QAOA and QAOA in terms of mixer Hamiltonian, cost Hamiltonian and input state.

bosonic QAOA Standard QAOA

ĤM
n∑
i=1

[−∆â†i âi −Kâ†2i â2i ]
n∑
i=1

[−∆(t)â†i âi −Kâ†2i â2i +G(â†2i + â2i )]

ĤC

n∑
i=1

[−Kâ†2i â2i +G(â†2i + â2i ) + Ei(âi + âi)]

+
∑

1≤i<j≤n
gij(â

†
i âj + â†j âi)

n∑
i=1

[−Kâ†2i â2i +G(â†2i + â2i ) + Ei(t)(âi + âi)]]

+
∑

1≤i<j≤n
gij(t)(â

†
j âi + â†i âj)

Input |0〉vac
∣∣C+
α

〉

0 1 2 3
α

0

1

2

3

β

0.4

0.6

0.8

FIG. 12. A section of the p = 1 expectation value landscape
for generating a target cat-state with bosonic QAOA. The
landscape is highly non-convex.

and

Ĥ1 = −Kâ†2â2 +G(â†2 + â2). (C11)

In the simulations, we use ∆ = K/(|α|2e−2|α2|) and

G = 4K, we optimize the angles (~γ, ~β) numerically with

respect to minimizing F (α, β) = 1 − |〈C+
α |ψ1(α, β)〉|2.

FIG. 12 shows F (α, β), where it can be seen that the
landscape is highly non-convex and finding the global
minimum is challenging. As a result, we obtain a poor
fidelity of the variational state with the target cat state,

|〈C+
α |ψ1(α∗, β∗)〉|2 = 0.57.
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I.-M. Svensson, G. Tancredi, G. Johansson, P. Delsing,
G. Ferrini, and J. Bylander, “Improved Success Probabil-
ity with Greater Circuit Depth for the Quantum Approxi-
mate Optimization Algorithm”, Physical Review Applied
14, 034010 (2020).

[13] N. Lacroix, C. Hellings, C. K. Andersen, A. Di Paolo,
A. Remm, S. Lazar, S. Krinner, G. J. Norris, M. Gabu-



13

reac, J. Heinsoo, A. Blais, C. Eichler, and A. Wallraff,
“Improving the performance of deep quantum optimiza-
tion algorithms with continuous gate sets”, PRX Quan-
tum 1, 110304 (2020).

[14] O. Pfister, “Continuous-variable quantum computing in
the quantum optical frequency comb”, Journal of Physics
B: Atomic, Molecular and Optical Physics 53, 012001
(2019).

[15] A. L. Grimsmo and A. Blais, “Squeezing and quantum
state engineering with josephson travelling wave ampli-
fiers”, npj Quantum Information 3, 1–11 (2017).

[16] T. Hillmann, F. Quijandŕıa, G. Johansson, A. Ferraro,
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